Closing The Gap

Java Test Assertion Generation via Knowledge Distillation with Trident Loss

Jeroen Chu
m.d.chu@student.tudelft.nl

1. Problem

Main Goal

This work aims to overcome the ¢
high computational demands of

Large Language Models (LLMs) by
developing a distilled model for
Java assertion generation, making

assertion generation accessible to
developers in resource- ‘I‘
constrained environments.

Motivation

While large language models (LLMs) show
impressive capabilities in generating test
assertions, their practical deployment in real-
world software development is hindered by
several critical barriers:

- Computational Cost:
State-of-the-art models are
computationally expensive and
memory-intensive, limiting their 111
use in common developer
scenarios like local IDEs or
CI/CD pipelines where rapid
feedback is essential.

- Privacy Risks: Reliance on

cloud-based APIs for large

models introduces significant

privacy concerns, as developers >
must send proprietary or J
sensitive code to third-party

servers.

- Accessibility Barriers: The
dependency on powerful
commercial models creates a
financial barrier to entry,
excluding developers and
researchers who lack the
resources to access them, which
In turn limits broader community
Innovation.

Research Questions (RQ)
- RQ1: How does our proposed Trident
loss compare to traditional knowledge
distillation methods?

- RQ2: How do the individual
components of the Trident loss
contribute to the final code quality?

- RQ3: How much does knowledge
distillation reduce the computational
footprint (model size and memory) of the
assertion generation model?

Supervisors:
Annibale Panichella, Mitchell Olsthoorn

2. Context

Existing solutions
Automated test assertion generation has
been a long-standing goal in software
testing research. Early approaches often
relied on dynamic analysis or inferring
program invariants, but these proved
difficult to integrate into real-world
developer workflows.
More recently, large language models like
Athenalest have been trained to generate
tests automatically. However, these models
often exhibit a limited depth of code
understanding, generating syntactically
plausible code that fails to capture the
essential logic of a valid assertion.

Knowledge Distillation
To address the high computational cost of
these large models, Knowledge Distillation
(KD)—a technique that trains a smaller
"student" model to mimic a larger
"teacher"—offers a path to efficiency. But
traditional distillation methods are not
optimized for the strict syntactic and
semantic demands of code generation.
They typically penalize a model for
generating a valid assertion that is not an
exact match, even though they are logically
identical.

Student Model

Towards smarter loss functions
Applying traditional KD to code is
challenging because the method penalizes
valid, semantically equivalent code that
differs syntactically. For instance, the
following are logically equivalent:

- assertFalse(list.isEmpty())

- assertTrue(list.size() > 0)
However, a basic loss function would treat
it as an error. This highlights the need for a
more nuanced approach that moves
beyond simple token-matching to
understand the underlying logic of the
code. To solve this, a multi-component loss
function is suited—one that can balance
different learning objectives to capture
syntactic correctness, semantic meaning,
and agreement with the teacher model
simultaneously.

Code Quality Score (CQS)

]
TUDelft

3. Solution

Methodology
We train our student model (Codel 5+
220M) using knowledge from a larger
teacher (Codel 5+ 770M). Our method is
centered on the Trident loss, which
dynamically adjusts the importance of three
components as training progresses:
- Focal Loss for concentrating on difficult
tokens.
- Jensen-Shannon Divergence for stable
knowledge transfer.
- Semantic Similarity Loss for rewarding
logically correct assertions.

This dynamic weighting allows the model to
first learn the teacher's broad knowledge
before focusing on the fine-grained
semantic details of code.

KD with Trident loss overview:

———————————————
i i
Dynamic Weight Scheduling: w,, w,, w,

L]
Teacher model __}1 Teacher logits

(Salasforcaicodelsp- . . T
770m, 1 » 05

) i i Teacher vs. Student Probabiliry

I [Distributions

SEMANTIC LOSS
_______________ ——>» Predicted vs. Reference Assertion
i i !

Embeddings

n
Student model ——— Student pregicted

(Salesforce/codelSp- ! assertions !
220m) . | jl_'
| L

L]
1 > FOCAL LOSS
Student Predictions vs. Hard Labels

: Datasel: Hard Labels :

/" W xFOGAL + w, x JSD + w, x SEMANTIC
A = TRIDENT LOSS

Results
- Trident loss outperforms traditional KD
methods
- KD with Trident loss successfully reduced
the model size and required GPU memory
by 71.4%.
- The resulting student model retains 90%
of the teacher's Code Quality Score,
enabling deployment in resource-
constrained environments.
- A key insight is that the static loss
configuration was more effective,
suggesting pre-trained models benefit from
a consistent optimization pressure.

Code Quality Score (CQS) Composition by Model

0.753
7 - 0.688 0.686 0.685 0.683 0.683 0.682

0.6
0.5
0.4
0.3
0.2 CQ5 Components
B Semantic Similarity (30%)
BN CodeBLEU {30%)
01 AST Validity (20%)
BN Token Accuracy (20%)
0.0
0 N L O N) i
% G@‘\L & & i ‘,e,*‘& L x A\ (@“"\
o W (“_\. & \0* & & %
\‘_,é’\ «{\be o ® é\\ o § 'z}x
8 v proy & «

x
&%

