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1. Problem

Main Goal

This work aims to overcome the ¢
high computational demands of

Large Language Models (LLMs) by
developing a distilled model for
Java assertion generation, making

assertion generation accessible to
developers in resource- ‘I‘
constrained environments.

Motivation

While large language models (LLMs) show
impressive capabilities in generating test
assertions, their practical deployment in real-
world software development is hindered by
several critical barriers:

- Computational Cost:
State-of-the-art models are
computationally expensive and
memory-intensive, limiting their 111
use in common developer
scenarios like local IDEs or
CI/CD pipelines where rapid
feedback is essential.

- Privacy Risks: Reliance on

cloud-based APIs for large

models introduces significant

privacy concerns, as developers >
must send proprietary or J
sensitive code to third-party

servers.

- Accessibility Barriers: The
dependency on powerful
commercial models creates a
financial barrier to entry,
excluding developers and
researchers who lack the
resources to access them, which
In turn limits broader community
Innovation.

Research Questions (RQ)
- RQ1: How does our proposed Trident
loss compare to traditional knowledge
distillation methods?

- RQ2: How do the individual
components of the Trident loss
contribute to the final code quality?

- RQ3: How much does knowledge
distillation reduce the computational
footprint (model size and memory) of the
assertion generation model?
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2. Context

Existing solutions
Automated test assertion generation has
been a long-standing goal in software
testing research. Early approaches often
relied on dynamic analysis or inferring
program invariants, but these proved
difficult to integrate into real-world
developer workflows.
More recently, large language models like
Athenalest have been trained to generate
tests automatically. However, these models
often exhibit a limited depth of code
understanding, generating syntactically
plausible code that fails to capture the
essential logic of a valid assertion.

Knowledge Distillation
To address the high computational cost of
these large models, Knowledge Distillation
(KD)—a technique that trains a smaller
"student" model to mimic a larger
"teacher"—offers a path to efficiency. But
traditional distillation methods are not
optimized for the strict syntactic and
semantic demands of code generation.
They typically penalize a model for
generating a valid assertion that is not an
exact match, even though they are logically
identical.
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Towards smarter loss functions
Applying traditional KD to code is
challenging because the method penalizes
valid, semantically equivalent code that
differs syntactically. For instance, the
following are logically equivalent:

- assertFalse(list.isEmpty())

- assertTrue(list.size() > 0)
However, a basic loss function would treat
it as an error. This highlights the need for a
more nuanced approach that moves
beyond simple token-matching to
understand the underlying logic of the
code. To solve this, a multi-component loss
function is suited—one that can balance
different learning objectives to capture
syntactic correctness, semantic meaning,
and agreement with the teacher model
simultaneously.

Code Quality Score (CQS)
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3. Solution

Methodology
We train our student model (Codel 5+
220M) using knowledge from a larger
teacher (Codel 5+ 770M). Our method is
centered on the Trident loss, which
dynamically adjusts the importance of three
components as training progresses:
- Focal Loss for concentrating on difficult
tokens.
- Jensen-Shannon Divergence for stable
knowledge transfer.
- Semantic Similarity Loss for rewarding
logically correct assertions.

This dynamic weighting allows the model to
first learn the teacher's broad knowledge
before focusing on the fine-grained
semantic details of code.

KD with Trident loss overview:
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Results
- Trident loss outperforms traditional KD
methods
- KD with Trident loss successfully reduced
the model size and required GPU memory
by 71.4%.
- The resulting student model retains 90%
of the teacher's Code Quality Score,
enabling deployment in resource-
constrained environments.
- A key insight is that the static loss
configuration was more effective,
suggesting pre-trained models benefit from
a consistent optimization pressure.
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