Exploiting multicore parallelism on optimal decision trees

AUTHOR

Dr. Emir Demirović

(e.demirovic@tudelft.nl)

Ayush Patandin (S.A.S.patandin@student.tudelft.nl)

PROFESSOR/SUPERVISOR

FACULTY

EEMCS TU Delft

COURSE CSE3000 Research Project

INTRODUCTION

- Decision trees: popular for solving classification or regression problems
- Heuristic methods vs. optimal decision tree algorithms
- Multi-core parallelism: able to quickly produce optimal decision trees

OBJECTIVE

Is it possible to exploit multi-core parallelism to produce optimal decision trees faster?

- 1. What are the possible trade-
- offs that need to be investigated when parallelizing parts of an optimal decision tree algorithm?
- 2. Which approach can be used to split the data and the tasks in parallel among the different workers in the decision tree?
 3. How to avoid correctness and performance issues when integrating parallelism into a

decision tree algorithm?

METHODOLOGY

- OpenMP: multi-threaded API
- Shared memory space
- Data race prevention
- Load Balancing

	0	penMP langua extensions	age	
parallel control structures	work sharing	data environment	synchronization	runtime functions, env. variables
governs flow of control in the program	distributes work among threads	scopes variables	coordinates thread execution	runtime environment
parallel directive	do/parallel do and section directives	shared and private clauses	critical and atomic directives barrier directive	<pre>omp_set_num_infeads() omp_get_thread_num() OMP_NUM_THREADS OMP_SCHEDULE</pre>

https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/O penMP_language_extensions.svg/1024px-OpenMP_language_extensions.svg.png?1621512030122

PRELIMINARY WORK

- MurTree
- Specialized depth 2 algorithm
- General Depth algorithm
- Caching of optimal subtrees
- Performance metrics
- 1. Parallel execution time
- 2. Parallel speedup

3. Program efficiency

5

RESULTS

(1) Trained decision tree models with dataset properties and their misclassification score for different tree depths.
(2) Parallel execution time w.r.t.
#processors for different benchmarks

(3) Parallel speedup w.r.t.
#processors for different
benchmarks
(4) Efficiency w.r.t. #processors
for different benchmarks

CONCLUSION

- Parallel MurTree algorithm: constructs accurate tree models on binarised datasets with incredible runtime improvements
- More CPUs -> better speedup and worse efficiency
- OpenMP constructs: partition and schedule chunks of computations to threads. Also prevent possible setbacks (data race, idle threads)
- Explore the work with Open MPI

RELATED LITERATURE

• E. Demirović, A. Lukina, E. Hébrard, J. Chan, J. Bailey, C. Leckie, K. Ramamohanarao, and P. J. Stuckey, Murtree: Optimal classification trees via dynamic programming and search, "ArXiv, vol. abs/2007.12652, 2020.

- T. Mattson, "An introduction to openmp," Feb. 2001, pp. 3–3, isbn: 0-7695-1010-8.doi:10.1109/CCGRID.2001.923161.
- T. Rauber and R. Gudula, Parallel Programming: for Multicore and Cluster Systems. Springer, 2013.

(3)

