TRAINING DIFFUSION MODELS WITH FEDERATED LEARNING

Matthijs de Goede M.B.J.degoede@student.tudelft.nl

1. BACKGROUND

Fig 1: Diffusion Models Gradually add noise to images and learn the reverse process.

Collaborative training of ML models without sharing raw data.

Responsible Professor: Jérémie Decouchant Supervisor: Bart Cox

5. EXPERIMENTS AND RESULTS

Experimental Setup

- Fashion-MNIST Dataset (28x28 grayscale)
- · Communication efficiency measured by Cumelative Number of Communicated Parameters
- Image quality measured by Fréchet inception distance (FID) [4] • Dirichlet Distribution ($\beta = 0.5$) to introduce label distribution skew
- (I-skew) and quantity skew (q-skew) [5]

Centralized Baseline

- Sufficient quality after 10 rounds FID <= 72
- Minor improvement after 15 rounds FID = 43

Full Federated Learning

- Considered scenarios with 2, 5 and 10 clients
- Local epochs increased to 5 to achieve comparable results

Comparing Training Methods

- With 2, 5 and 10 clients on IID, I-skewed and q-skewed data (Tab 1)
- With 5 clients and IID data, all produced good looking images (Fig 7)

METHOD #CLIENTS		5 #PARAMS (M)		FID SCORE	
			IID	L-SKEW	Q-SKEW
BASELINI	E 1	0	43 ± 1	n/a	n/a
	2	179.78	39 ± 2	33 ± 1	33 ± 3
FUU	5	449.45	39 ± 4	43 ± 4	23 ± 5
IOLL	10	898.89	61 ± 2	64 ± 3	76 ± 11
	2	134.81	37 ± 3	38 ± 4	55 ± 4
USPLIT	5	243.73 -25%	41 ± 5	61 ± 5	39 ± 9
	10	674.17	62 ± 3	70 ± 8	87 ± 19
	2	105.50	45 ± 13	49 ± 4	54 ± 24
ULATDEC	* 5	263.75 -41%	53 ± 15	72 ± 30	122 ± 138
	10	527.51	70 ± 14	101 ± 83	137 ± 125
	2	47.54	49 ± 16	49 ± 5	78 ± 48
	5	118.85 -74%	51 ± 15	75 ± 31	139 ± 135
	10	237.69	72 ± 20	94 ± 67	147 ± 119

Fashion-MNIST samples generated with each of the training methods Communication efficiency and image quality in different federated settings, using 15 communication rounds and 5 loal epochs. The * denotes that the FID scores have been averaged over all local client using 5 clients, IID data, 15 communication rounds and 5 local epochs. models. FID scores that exceed 72 within one standard deviation are marked in orange.

• Privacy, data authority, and transparency issues • Data variety among clients exploitable to build better models

2. MOTIVATIONS

· High communication overhead in collaborative training

· Strong dependency on Big Tech for image generation models

3. OBJECTIVES

- Train Diffusion Models using Federated Learning
- Maximize image quality
- Minimize communication overhead
- Robustness against Statistical Heterogeneity

4. METHODOLOGY

Communication Efficient Training

Exploit UNet Architecture to reduce number of communicated parameters

FULL $\mathcal{O}(R \cdot K \cdot 2|\theta|)$

Send full set of parameters back and forth between federator and K clients

USPLIT $\mathcal{O}(R \cdot K \cdot \frac{3}{2}|\theta|)$

Federator sends full set of parameters, K clients send complementary updates Train the decoder and bottleneck in federated way, encoder locally

UDEC $\mathcal{O}(R \cdot K \cdot |\theta_{dec}|)$

Train only the decoder in federated way, encoder and bottleneck locally

ULATDEC $\mathcal{O}(R \cdot K \cdot |\theta_{bot} \frown \theta_{dec}|)$

 x_{t-1} x_t GAUSSIAN TRANSITION $p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$ KERNEL LEARNED MEAN FIXED $=\epsilon_{\theta}(x_t,t))$ VARIANCES LEARNED NOISE UNET FIXED NOISE SCHEDULE

FULL & USPLIT ULATDEC **IN: NOISY IMAGE OUT: NOISE TO SUBTRACT** UDEC BOTTLENECK DECODER ENCODER $\theta = \theta_{enc} \frown \theta_{bot} \frown \theta_{dec}$

Fig 3: DDPM

Denoising Diffusion Probabilistic Model [1] that models the

Convolutional Neural Network with Encoder, Decoder and Bottleneck transition kernels of the reverse diffusion process as Gaussians. to predict the noise added to a sample at a specific timestep [2].

CLIENTS FEDERATOR $\nabla_{\theta} \| \epsilon_t - \epsilon_{\theta}(x_t, t)$

Fig 5: FedDiff

Federated Averaging [3] of UNet parameters based on client dataset size. Clients perform batch SGD on local dataset to update their parameters.

Fig 6: USplit Task Assignment

Every round, the federator splits the tasks for reporting about network parts complementarily within random client pairs.

Tab 1: Communication efficiency and image quality

Fig 7: Fashion-MNIST samples

6. CONCLUSIONS

- Diffusion models can successfully be trained using FedDiff with multiple local epochs • FULL federated training robust to q-skew and I-skew with a limited number of clients
- USPLIT reduces communication by 25% but limits the robustness against non-IID data
- UDEC reduces communication by 74% but leads to variations in image quality among local client models. Works only in conjunction with a limited number of clients and IID data
- Comparable image quality for all methods with IID data and a limited number of clients

7. FUTURE WORK

- Design federated solutions for diffusion models based on Stochastic Differential Equations (SDEs) and Stochastic Score-Based Generative Models (SGMs)
- Improve robustness against non-IID data with alternative aggregation methods
- Establish theoretical bounds for the convergence of our methods
- Integrate Latent Diffusion Models (LDMs) to work with higher resolution datasets

REFERENCES

[1] Ho et al., "Denoising Diffusion Probabilistic Models," NeurIPS 2020. [2] McMahan et al., "Communication-Efficient Learning of Deep

Networks from Decentralized Data." AISTATS 2017.

[3] Ronneberger et al., "U-net: Convolutional networks for biomedical image segmentation," MICCAI 2015.

[4] Heusel et al., "Gans trained by a two time-scale update rule

converge to a local nash equilibrium," NeurIPS 2017.

[5] Yurochkin et al., "Bayesian nonparametric

federated learning of neural networks," ICML 2019.