Benchmarking Self-supervised Learning for **Denoising Voltage** Imaging Data

- Voltage imaging is a powerful technique to observe fast **neuron** activity.
- Due to how fast the processes are, the resulting videos are very noisy.
- Challenge: Standard deep learning denoisers require clean and noisy image pairs for training, but such datasets are scarce for voltage imaging.
- Solution: Use self-supervised models which only need noisy data for training.

Research question

How do different self-supervised denoising models, Noise2Void, AP-BSN and DeepVID v2, compare in their effectiveness at denoising synthetic and real-world voltage imaging data, as measured by **PSNR**, **SSIM** and **tSNR**?

Author

Ioan Leolea

i.leolea@student.tudelft.nl

Supervisors

Nergis Tömen Alejandro Castañeda Garcia

Background

Noise type

- The noise is caused by imperfections in the camera's electronics and fluctuations in the number of photons detected.
- Described by a complex Poisson-Gaussian noise distribution.

Methodology

Two datasets:

- One containing **synthetic images** with added Poisson-Gaussian noise.
- One containing **real images** with neurons from hippocami of mice.

Results

Model	PSNR (dB)	SSIM
Noise2Void	26.662	0.877
AP-BSN	13.130	0.074
DeepVID v2	33.193	0.970

Synthetic dataset results

Clean

No clean image

Noise2Void

Blind-Spot Networks

- Only noisy images.
- Normal CNNs would predict the identity function.
- A BSN learns to predict a pixel's value based only on its surrounding pixels.

Three metrics:

- Structural similarity index measure (SSIM)
- Peak Signal to Noise Ratio (PSNR)
- Temporal Signal to Noise Ratio **(tSNR)**

Three models:

- model used as baseline.
- spatially correlated noise.
- **DeepVID v2:** A model specialized on voltage imaging data that leverages temporal information by using consecutive video frames.

Model	tSNR (dB)
Baseline	5.36
Noise2Void	5.44
AP-BSN	6.41
DeepVID v2	5.82

Real dataset results

- compared.

Discussion

• Noise2Void: A foundational self-supervised

• **AP-BSN:** A BSN that uses subsampling to handle

Limitations

• The absence of ground-truth for real data forced the use of tSNR, which proved to be an unreliable metric. Hyperparameters were not optimized for the models. • A relatively small number of models was

• Self-supervised denoising is a viable strategy for voltage imaging datasets. • **DeepVID v2** decisively outperformed the other models, because it used temporal information from videos. • The **subsampling** technique used by AP-BSN is **ill-suited** for this specific task. • Future work should explore **newer models** like Transformers and GANs, and develop better benchmarking datasets for real voltage imaging videos.