
1

Libraries speed up development [1]
Adding libraries can lead to vulnerability threats through direct or transitive
dependencies:

Current research focuses only on current releases of dependencies, missing
the past [2]
Introducing the time component to create a scalable temporal dependency
graph

 - Apache Log4J
 - Equifax

2

3

4

JUNIT
4.13.1
T2

Design the temporal dependency package network [3](Fig 1)

Gather the data from the Maven Central repository

Implement the graph data structure and feed the data into it

Resolve dependencies constraints from Maven (Fig 2)

Allow querying on time intervals

Analyze the data with various algorithms at different points

 - Packages are nodes and dependencies are edges

in time

JUNIT
4.13.2
T4

HAMCREST
1.3
T1

HAMCREST
2.1
T3

A-1.0

B-1.0

B-2.0

B-2.3

CONSTRAINT: [1.0,2.3)

METHODOLOGY

INTRODUCTION & BACKGROUND

The graph structure maintains
corectness:

CONCLUSION
The one major contribution is adding the possibility
of querying on different time ranges in a package
dependency network, more precisely, a TDPN.

Moreover, it provides an insight into the ecosystem
of Maven, its dimensions, and how vulnerability can
be observed as a potential side-effect of showing
software usage over time.

RESULTS

RELATED LITERATURE
[1]Parastoo Mohagheghi and Reidar Conradi. Quality,
productivity and economic benefits of software reuse: a
review of industrial studies. Empirical Software
Engineering, 12(5):471–516, Oct 2007.
[2]César Soto-Valero, Amine Benelallam, Nicolas
Harrand, Olivier Barais, and Benoit Baudry. The
emergence of software diversity in maven central. In
Proceedings of the 16th International Conference on
Mining Software Repositories, MSR ’19, page
333–343. IEEE Press, 2019.
[3]Riivo Kikas, Georgios Gousios, Marlon Dumas, and
Dietmar Pfahl. Structure and evolution of package
dependency networks. In 2017 IEEE/ACM 14th
International Conference on Mining Software
Repositories (MSR), pages 102–112, 2017.

ANALYZING THE CRITICALITY OF APACHE
MAVEN PACKAGES THROUGH A TEMPORAL

DEPENDENCY GRAPH
AUTHOR:
Denis Corlade (D.Corlade@student.tudelft.com)
SUPERVISORS:
Georgios Gousios, Diomidis Spinellis

RESEARCH QUESTIONS
RQ1 - What would a graph data structure for package dependencies that
contain a time component look like?

RQ2 - Does the introduction of time increase precision?

RQ3 - What are the most widely used Java packages?

MAIN RQ - What are the most widely used Java packages at a given time?

Fig 1-Graph Structure Fig 2-Querying

Accuracy was tested by comparing the
list of dependencies shown by using the
algorithm implement versus the list of

dependencies shown by using the
repository manager.

The time component increases
precision:

Showing all dependencies of "junit"
package:

The above table does not take time into
consideration, and in case one is to

query for a specific interval, it would not
provide the wanted results.

Fig 3-Accuracy table Fig 4-Dependencies on time intervals Fig 5&6-Analysis of the most used packages currently
and over time

What is the most
used software?
Analysis of most used
packages calculated
with the PageRank
algorithm.
Plotting the rankings
over time shows
interesting trends

Showing all dependencies of "junit"
package after 2019:

5 FUTURE WORK6

Nodes - 40K
Edges - 1.5M

The graph is constructed using as little
information in the nodes as possible to

improve efficiency.

A larger dataset could be downloaded.
Implement the graph in a different language
from Golang to improve efficiency
Comparison between the graph implemented in
this paper and other previous work.
Analyze the packages per different scope (test,
provided etc.)
A more in depth validation of the work and
correctness.

