UNSUPERVISED DAY-NIGHT DOMAIN ADAPTATION WITH A PHYSICS PRIOR FOR IMAGE CLASSIFICATION

J.C.VANGEMERT@TUDELFT.NL A.LENGYEL@TUDELFT.NL G.D.BROUWER@STUDENT.TUDELFT.NL CSE3000 | 21 JAN. 2022

GEES BROUWER - SUPERVISOR: ATTILA LENGYEL - RESPONSIBLE PROFESSOR: JAN VAN GEMERT

BACKGROUND

- * Deep neural networks show great potential to be part of safety-critical applications, such as autonomous driving
 - A Convolutional Neural Network (CNN) is a common use for performing:
 - Image classification: the task of correctly assigning a label to a given image.
- * In this context, reliability on the performance of image classification is essential

INTRODUCTION

- Problem: Deep image classification methods are sensitive to * illumination changes - improving robustness by adding training data is often non-trivial
- An illumination shift between train and test data can be addressed by **domain adaptation** methods

A zero-shot setting, where a model is trained using only samples from the source domain, explored by recent work [1] by introducing Color Invariant Convolution (CIConv), aiming to transform input to a domain invariant representation

Unsupervised domain adaptation (UDA) where a model is trained on source domain + unlabeled samples from target domain, promotes emergence of invariant features w.r.t. the domain shift

RESEARCH QUESTION

"How does the zero-shot setting with CIConv compare to an unsupervised setting with/without CIConv for day-night domain adaptation for image classification?

METHOD

- Color Invariant Convolution (CIConv) [1]:
 - Implements color invariant edge detectors
 - * A trainable layer that can be added as the first layer of a CNN
- Unsupervised Domain Adaptation by Backpropagation [2]:
- Method for extending any feed-forward network trainable by backpropagation to perform UDA (resulting model is often referred to as DANN)
- * Works with domain classifier connected to feature extractor via a gradient reversal layer (see Fig. 1)

feature extractor $G_f(\cdot; \theta_f)$ \square domain label d $\overline{ \frac{\partial L_y}{\partial \theta_f} }$ forwardprop backprop (and produced derivati

Figure 1. Unsupervised Domain Adaptation by Backpropagation [2

Figure 2. Samples from the day (source domain) and night (target domain) test sets of the CODaN dataset [1]

Experimen	t 3: Traini	ng a DAN
Experiment 4: Training a DAN		
	D	
Method	Day	Night
Without CIConv (resized)	68.9 ± 0.3	38.3 ± 0.4
With CIConv (resized)	69.8 ± 0.7	49.4 ± 0.3
	-	

Table 1: CODaN classication accuracies of a ResNet-18 architecture veraged over three runs

Method	

Without CICor

With CIConv (1

Table 2: CODaN classication accuracies of a DANN ResNet-18 arecture averaged over three runs

- * (i) Effectiveness CIConv in ZS confirmed by our experiments, (ii) UDA performed similar to CIConv in ZS, (iii) UDA + CIConv performed significantly better over the other experiments.
- Domain classifier showed that CIConv does not result in full domain invariance and indicates that UDA and CIConv 'reinforce' each other.

=> Size of dataset + analyzing the results lead me to question the results of UDA

experimentation on UDA + CIConv

11 ZERO-SHOT DAY-NIGHT DOMAIN ADAPTATION WITH A PHYSICS PRIOR HTTPS://ARXIV.ORG/PDF/2108.05137.PDI

EXPERIMENTS & RESULTS

- Dataset: Common Objects Day and Night (CODaN) [1]; 10 common object classes recorded in both daytime and nighttime (see Fig. 2)
- Zero-shot setting (Results shown in Table 1): **Experiment 1:** Training a baseline CNN (Resnet-18) Experiment 2: Training a CNN (Resnet-18) + CIConv Unsupervised domain adaptation (Results shown in Table 2): NN (= Resnet-18 + UDA) NN (= Resnet-18 + UDA) + CIConv

	Day	Night
nv (resized)	68.4 ± 1.2	49.2 ± 1.5
resized)	69.7 ± 0.5	58.2 ± 0.4

Figure 3: Accuracy of the *domain classifier* during the training of a ResNet-18 DANN on the CODaN dataset with CICony implemented

CONCLUSION/DISCUSSION

- Limitation: The dataset we used (CODaN) is relatively small
- Limitation: The need to resize every sample due to memory constrains lead to lower results
- Future work: Perform same experiments on larger datasets without resizing, further