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SQ1: How does increasing momentum in
SGD and NAG impact the shape of the gap?
SQ2: How do adaptive optimizers
(AdaGrad, RMSprop, Adam) compare?

RQ: ”What is the impact of momentum and different optimizer choices on
the stability gap of deep neural networks in continual learning problems?

Nesterov Accelerated Gradient - NAG

Root Mean Square Propagation - RMSprop

Adaptive Moment Estimation - Adam

Continual learning defines the accumulation of
knowledge performed by an agent, be it natural or
artificial, exposed to data-generating distriburtions, with
the goal of solving future pattern identification
problems. 
Artificial (deep neural network - DNN) models have been
shown to struggle to integrate incoming information
without disrupting existing memory (“stability-plasticity
trade-off”). 
Recent analyses of model performance during transitions
between different tasks have revealed a recurring sharp
performance drop, followed by a gradual recovery;  This
has been termed the Stability Gap [1].

Research Question

Introduction

Conclusions

Results and discussionOptimizers benchmarked 

Setup and Metrics

Stochastic Gradient Descent - SGD with momentum

Adaptive Gradient Algorithm - AdaGrad

close variant of SGD with momentum,
calculating the next gradient trajectory at a
look-ahead position, after applying velocity

reduces per-parameter learning rate
in a directly proportional way to its
summed squared gradient history

has a hybrid momentum-based and
adaptive design, including bias
correction, and is often the preferred
option in deep learning
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Evaluating optimizer-induced stability gap shapes in a
domain-incremental learning [3] process of a DNN with

Dataset: Rotated-MNIST
Training regime: Incremental-Joint training 
Mini-batch size: grows incrementally 128-256-384-512
Model architecture: 3 fully-connected hidden layers
with 400 ReLU neurons each
Evaluation periodicity: 1
Test size: 2000
Optimizer yperparameters: tuned in a gridsearch way 
Iterations per task: 500

Figure 7: Stability gap metrics.
Alongside these, we compute
general indicators of average

accuracy ACC, average forgetting
FORG, and average minimum

accuracy min-ACC.
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Understanding the shape of the forgetting phenomenon
can potentially contribute to reducing resource
consumption and computational time needed to train
models exposed to complex non-stationary environments.

Figure 8: Task-specific
training samples, with

rotational degrees applied.

pioneered a velocity term that guides
parameter updates, much like a ball rolling
downhill, accumulating inertia to overcome
small bumps (local minima) and smooth
transitions 

adjusts per-parameter learning
rate using a decay factor that
makes older gradients less
influential on current updates

Figure 4: AdaGrad [2]

Figure 5: RMSprop [2]

Figure 6: Adam [2]

Figure 3: NAG

Figure 2: SGD

Figure 9: Performances of (a) SGD and (b) NAG on Task 1 under different momentum values. 

SQ1: Momentum

SQ2: Adaptive methods

Figure 10: Trends of the stability gap metrics
for SGD and NAG, based on momentum.
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Figure 11: Trends of the stability-plasticity metrics
for SGD and NAG, based on momentum.

Insights:
increasing momentum leads to a steeper
performance drop (DS), a sharper and
earlier recovery (RS), a deeper stability
gap (GD), which together ultimately
shorten its duration (TBP)
these volatile updates of parameters are
a result of a stronger inertia force that
pulls the configuration away from the
previous optimum point, but also allows
a faster finding of the joint trajectory
there exists a trade-off between an
accelerated convergence (at a higher
overall performance) and a stable
performance evolution after a task
transition point
NAG’s more preemptive updates help it
prevent overshooting and correct its
course earlier, scoring a lower GD

Figure 12: Performance of the adaptive optimizers on Task 1.

Figure 13: Stability gap metrics for
AdaGrad, RMSprop and Adam.

Figure 14: Stability-plasticity metrics for
AdaGrad, RMSprop and Adam.

Insights:
AdaGrad and RMSprop exhibit the most
controlled stability gap slopes and depths,
although struggling more than Adam with
joint accuracy performance
RMSprop proves most capable to minimize the
depth and recovery time of the stability gap
AdaGrad’s prolonged recovery can be
explained by its monotonically decreasing
learning rates
Adam performs similarly to the previous
momentum-based optimizers, increasing the
amplitude of the gap and overall volatility

We acknowledge the experimental time and space complexity (model size, number of tasks) limitations, as well as the simplified rotated-digit identification tasks. 
We hypothesize that, while RMSprop (adaptivity) maintains a balance of plasticity and stability in this case, SGD and NAG (high-momentum values) generalize
more effectively. This can result in an overall more stable learning trajectory, as the number and complexity of the tasks, as well as the noise presence, increase.

Higher momentum increases the steepness and magnitude of the gap, while narrowing it.
AdaGrad expectedly experiences a mild drop, but limited plasticity.
Adam mirrors the volatility of SGD and NAG.
RMSprop strikes the best balance between controlling the drop and scoring considerably
high in joint accuracy.
Safety-critical systems such as autonomous vehicles or adaptive healthcare tools, where
even minimal performance drops can have major consequences, would highly benefit from a
deeper understanding of the stability gap.
Future research avenues include evaluating the generalizability of the observed trends
across larger-scale learning scenarios, broader datasets and more complex DNN
architectures.
Ultimately, deeper insights into the stability gap phenomenon can enable robust and
resource-efficient continual learning, by effectively preserving acquired knowledge.

Figure 1: The
Stability Gap
phenomenon
exhibited by

models at task
transitions, as

theorized by [1].


