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$Q2: Adaptive methods
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SGD and NAG impact the shape of the gap?

. RQ: ”"What is the impact Of momentum and different optimizer choices on We acknowledge the experimental time and space complexity (model size, number of tasks) limitations, as well as the simplified rotated-digit identification tasks.
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( , RMSprop, p ffectively g trajectory plexity of P
Setu Metrics Conclusions References
Evaluating optimizer-induced stability gap shapes in a HE et o Higher momentum increases the steepness and magnitude of the gap, while narrowing it. [1] Lange, M. D., van de Ven, G. M., and
P N q : - P Py Tuytelaars, T. (2023). Continual evaluation
domain-incremental Learning [3] process of a DNN with Figure7: Stability gap metrics,  * A:“q"'d, e"pmhe‘ﬂu o Cerh "“l: digp butlimitedplostictuy; for lifelong learning: Identifuing the
e Dataset: Rotated-MNIST Alongside these, we compute * Adam mirrors the volatility of SGD and NAG. bility gap. In The El h Internati

.. o q a-f St L indicat * RMSprop strikes the best balance between controlling the drop and scoring considerabl p 8
* Training regime: Incremental-joint training : genera Al:‘clm ors of """:g_e ! P .P' 9 P 9 Y Conference on Learning Representations,
ini-batch size: X ) e 2ah. ; CEETR 18, (Ui ATy high in joint accuracy. ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
* Mini-batch size: grows incrementally 128-256-384-512 : FORG, and average minimum o Safety-critical sy; such as aut vehicles or adaptive healthcare tools, where [2] Efimou, V. (2023). Understanding Deep
¢ Model architecture: 3 fully-connected hidden layers h Aceuracy Gccliacl At even minimal performance drops can have major consequences, would highly benefit froma  Learning Optimizers: Momentum, AdaGrad,
with 400 RelLU neurons each : ===~ Task Switch deeper understanding of the stability gap. I[l;;lSproz a‘r;d Adqan;. Tiwardls Datt{r Scizndce.
. . . e i i R 15 van de Ven, G. M., Tuytelaars, T., an
¢ Evaluation periodicity: 1 Task 1 ey ek 3 sk 4 ¢ Future research avenues include evaluating the generalizability of the obserued trends Tollas, A, 5. (2022), Threeutgpes of
o Test size: . - across larger-scale learning scenarios, broader datasets and more complex DNN X o - .
ze: 2000 Figure 8: Task-specific . incremental learning. Nature Machine In-
o Optimizer yperparameters: tuned in a gridsearch way 3 training samples, with architectures. - ielligence i (12):11855 197,
. lterati task: 500 rotational degrees applied. ¢ Ultimately, deeper insights into the stability gap phenomenon can enable robust and Poster template was provided by
Shationsipeiask. 0 50° 100° 150° resource-efficient continual learning, by effectively preserving acquired knowledge. PosterNerd.

25" of June 2025




