# Network Anonymization for Science: A Simulated Annealing Approach

## BACKGROUND

#### Network Anonymization

- Social networks risk privacy leaks via structural re-identification.
- Network anonymization modifies graphs to make individuals indistinguishable.
- Existing methods of solving either lack quality of solution (Xie, 2023) or are too slow (ILP)

#### Preliminaries:

- (*n*,*m*)-flavoured *k*-anonymity (Latour, 2024): indistinguishability based on degree and triangle count.
- *d-k-*anonymity (de Jong et al., 2023): indistinguishability based on d-depth neighborhood structure.
- Edge Deletion Budget: % of edges that may be deleted to anonymize.
- Goal: Achieve maximum anonymization by deleting as few edges as possible within a given budget.



Fig. 1: Graph before (n,m)-anonymization

Fig. 2: Graph after (n,m)-anonymization

## **MOTIVATION - SIMULATED ANNEALING**

- Structural privacy is hard to guarantee in real-world networks.
- Simulated Annealing (SA) offers a compromise: good quality of anonymization with acceptable run-time.
- Goal: Improve anonymity while staying within a fixed edge deletion budget.
- SA advantages: escapes local minima, flexible, easy to tune, has been previously used to solve other types of k-anonymity problems (Winkler, 2002).

### REFERENCES

[1] de Jong, R. G., van der Loo, M. P. J., & Takes, F. W. (2023). Algorithms for Efficiently Computing Structural Anonymity in Complex Networks. ACM J. Exp. Algorithmics, 28, 1.7:1-1.7:22. T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks". In: IEEE Access (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2909068.

[2] Latour, A. L. D. (2024). Research note—Anonymisation—ILP encoding. personal communication (unpublished)

#### 3] Xie, X. (2023). Anonymization algorithms for privacy-sensitive networks [LIACS, Leiden University]. https://theses.liacs.nl/2838 [4] Winkler, W. (2002). Using Simulated Annealing for k-Anonymity.

## **RESEARCH QUESTION**

- 1. How does a Simulated Annealing-based anonymization approach compare to existing heuristic methods when achieving (n,m)- and d-k-anonymity in terms of:
  - a. quality of solution
- b.running time
- 2. For which problem setting does SA perform best in terms of running time or anonymization quality?

## METHODOLOGY

Compare Simulated Annealing to methods from Xie[1]: 1. Logistic Regression Deletion 2.UA Deletion . Greedy Deletion



Fig. 3: Simulated Annealing Implementation for Network Anonymization

## **EXPERIMENTAL SETUP**

Setup

- 7 **datasets** that represent empirical social networks
- 4 **budgets** for available edge deletion: {1%, 3%, 5%, 10%}
- 2 **metrics**: (n,m)-anoynmity, d-k-anonymity
- 4 methods: SA & heuristics

#### **AUTHORS**

Student: Denisa Arsene; earsene@student.tudelft.nl Supervisor & Responsible Professor: Dr. Anna L. D. Latour

#### **AFFILIATIONS**

Delft University of Technology

#### GITHUB

https://github.com/arsenedenisa/Simulated-Annealing-for-Network-<u>Anonymization</u>

## RESULTS

## 1) QUALITY OF SOLUTION & RUNNING TIME



recomputes uniqueness on the ole graph: slo



network

CollegeMs

CA-GrQc

ego Facebo



|    |        | <b>1</b> n,m | (n,m) | <b>▲</b> <i>n</i> , <i>m</i> | (n,m) | * n,m    | (n,m) | * n, m   | $\vee(n,m)$ |
|----|--------|--------------|-------|------------------------------|-------|----------|-------|----------|-------------|
|    | LR     | 43.02        | 0.208 | 134.94                       | 0.168 | 226.10   | 0.151 | 439.27   | 0.142       |
| .  | Greedy | 21.50        | 0.147 | 68.73                        | 0.102 | 114.74   | 0.091 | 230.98   | 0.077       |
|    | UA     | 0.90         | 0.205 | 2.78                         | 0.169 | 28.37    | 0.125 | 9.31     | 0.118       |
|    | SA     | 30.51        | 0.171 | 99.35                        | 0.096 | 166.49   | 0.075 | 306.13   | 0.052       |
|    | LR     | 45.61        | 0.040 | 153.77                       | 0.028 | 249.12   | 0.024 | 490.44   | 0.018       |
|    | Greedy | 80.05        | 0.035 | 266.67                       | 0.028 | 433.07   | 0.023 | 853.22   | 0.021       |
|    | UA     | 0.85         | 0.042 | 2.76                         | 0.044 | 4.67     | 0.041 | 8.98     | 0.033       |
|    | SA     | 31.24        | 0.036 | 55.46                        | 0.025 | 69.17    | 0.023 | 139.39   | 0.017       |
|    | LR     | 67.53        | 0.221 | 210.70                       | 0.183 | 365.67   | 0.163 | 690.29   | 0.135       |
|    | Greedy | 40.15        | 0.180 | 129.14                       | 0.139 | 223.23   | 0.111 | 431.46   | 0.100       |
|    | UA     | 1.267        | 0.231 | 3.89                         | 0.198 | 6.75     | 0.182 | 12.86    | 0.152       |
|    | SA     | 48.55        | 0.184 | 113.88                       | 0.126 | 169.52   | 0.110 | 926.83   | 0.073       |
|    | LR     | 1329.68      | 0.548 | 4026.02                      | 0.512 | 6758.49  | 0.486 | 12320.98 | 0.420       |
| ok | Greedy | 383.21       | 0.518 | 1277.18                      | 0.447 | 2141.84  | 0.423 | 4031.05  | 0.358       |
|    | UA     | 15.74        | 0.571 | 56.50                        | 0.539 | 85.79    | 0.531 | 154.98   | 0.506       |
|    | SA     | 1 110.49     | 0.45  | 20655.17                     | 0.332 | 14536.00 | 0.331 | 17042    | 0.320       |
|    |        |              |       |                              |       |          |       |          |             |

Table 1: Running time and final Uniqueness for large datasets, using (n,m)-anonymity

## 2) CONDITIONS FOR SA OPTIMALITY

|          |               |        | _         |             |                  |           |           |             |           |           |           |             |                  |           |           |             |                  |           |
|----------|---------------|--------|-----------|-------------|------------------|-----------|-----------|-------------|-----------|-----------|-----------|-------------|------------------|-----------|-----------|-------------|------------------|-----------|
|          | Dataset       | Method | 1%        |             |                  | 3%        |           |             | 5%        |           |           |             | 10%              |           |           |             |                  |           |
| ULK SIZE |               |        | $T_{n,m}$ | $U_{(n,m)}$ | T <sub>d-k</sub> | $U_{d-k}$ | $T_{n,m}$ | $U_{(n,m)}$ | $T_{d-k}$ | $U_{d-k}$ | $T_{n,m}$ | $U_{(n,m)}$ | T <sub>d-k</sub> | $U_{d-k}$ | $T_{n,m}$ | $U_{(n,m)}$ | T <sub>d-k</sub> | $U_{d-k}$ |
|          | Copnet SMS    | LR     | 0.34      | 0.012       | 0.48             | 0.028     | 0.197     | 0.008       | 0.37      | 0.008     | 0.54      | 0.005       | 1.61             | 0.003     | 1.06      | 0.0         | 2.56             | 0.0       |
|          |               | Greedy | 0.14      | 0.008       | 0.16             | 0.024     | 0.085     | 0.007       | 0.12      | 0.021     | 0.23      | 0.0         | 0.81             | 0.017     | 0.44      | 0.0         | 1.54             | 0.017     |
|          |               | UA     | 0.007     | 0.014       | 0.07             | 0.030     | 0.023     | 0.007       | 0.20      | 0.005     | 0.03      | 0.003       | 0.95             | 0.005     | 0.47      | 0.003       | 0.69             | 0.001     |
|          |               | SA     | 0.04      | 0.020       | 2.12             | 0.035     | 0.223     | 0.006       | 20.56     | 0.010     | 0.53      | 0.002       | 67.30            | 0.001     | 1.79      | 0.0         | 281.72           | 0.0       |
|          | fb-pages-food | LR     | 1.38      | 0.162       | 1.79             | 0.370     | 4.01      | 0.141       | 4.26      | 0.324     | 6.42      | 0.119       | 12.89            | 0.296     | 13.02     | 0.095       | 20.77            | 0.211     |
|          |               | Greedy | 0.51      | 0.140       | 0.73             | 0.406     | 1.49      | 0.106       | 2.32      | 0.400     | 2.45      | 0.083       | 4.68             | 0.396     | 5.03      | 0.071       | 8.40             | 0.353     |
| ۶.       |               | UA     | 0.039     | 0.175       | 0.28             | 0.401     | 0.11      | 0.159       | 1.41      | 0.387     | 0.19      | 0.143       | 1.77             | 0.364     | 0.40      | 0.130       | 3.15             | 0.356     |
| lei      |               | SA     | 0.75      | 0.153       | 32.30            | 0.372     | 2.69      | 0.099       | 163.29    | 0.293     | 6.50      | 0.067       | 445.04           | 0.262     | 17.65     | 0.040       | 1276.03          | 0.179     |
|          | Copnet FB     | LR     | 16.94     | 0.443       | 24.35            | 0.775     | 51.96     | 0.365       | 69.70     | 0.706     | 85.60     | 0.325       | 175.45           | 0.675     | 165.21    | 0.272       | 218.95           | 0.566     |
|          |               | Greedy | 5.61      | 0.273       | 5.54             | 0.818     | 17.55     | 0.201       | 26.70     | 0.806     | 28.89     | 0.170       | 39.677           | 0.768     | 56.80     | 0.145       | 79.860           | 0.733     |
|          |               | UA     | 0.38      | 0.417       | 1.23             | 0.817     | 1.22      | 0.342       | 3.81      | 0.808     | 2.04      | 0.299       | 8.131            | 0.788     | 3.96      | 0.261       | 13.177           | 0.753     |
| V        |               | SA     | 7.03      | 0.353       | 71.38            | 0.777     | 32.06     | 0.202       | 696.03    | 0.695     | 73.26     | 0.142       | 1502.84          | 0.648     | 661.06    | 0.095       | 5534.08          | 0.555     |

Table 2: Running time and final Uniqueness for small datasets, using (n,m) and d-k-anonymity

#### Key Findings:

- SA performs better than baselines in final
- uniqueness for dense graphs like ego Facebook.
- SA performs best when:
- Graph is **dense** or large,
- Initial uniqueness is high, Deletion budget is ≥5%.

## CONCLUSION

#### Key Findings:

- SA excels on dense networks and with high initial uniqueness, especially under larger edge deletion budgets.
- While usually slower than Greedy, SA achieves consistently lower uniqueness for (n,m)-anonymity. • For d-k-anonymity, SA is the slowest but yields a better
- solution for more complex networks.
- Overall, SA provides a strong middle ground between heuristic speed and optimality of solution.

#### Future Work:

- Use restart strategies (e.g., SARS) to escape local minima.
- Extend to other anonymity models beyond (n,m) and d-k.
- Compare SA method with optimal solutions



**Key Findings (Solutin** 

Quality):

>3% (Fig. 4.a). In the other cases, Greedy is faster **d-k-anonymity**: SA

For the largest network, the

Greedy becomes smaller for

a bigger budget (Fig. 4.b)

(n,m)-anonymity: SA

methods in terms of solution quality for budgets

outperforms all other

outperforms all other methods for budgets >3%

gap between SA and

Key Findings (Running time):

SA is usually slower than the Greedy method

• UA is the fastest method

but yields the worst

• For d-k-anonymity, the

running time increases

quickly with the size of

solution

the graph.

(Fig. 4.c).

10%