
Contact the Author
Mert Bora İnevi (5540488)
Delft University of Technology
CSE3000 Research Project Group 28
m.b.inevi@student.tudelft.nl
https://boraini.com

  Experiments and Results
● Effect on number of solved problems with limited 

number of enumeration steps once the grammar 
is extended.

● Effect of allowing and not allowing replaceable 
parts in the extensions. 

● Effect of heuristics used for choosing grammar 
extensions. Choosing shorter subprograms, more 
often encountered programs, or programs with 
more substitutable parts, termed holes.

● Performance comparison to other subproblem 
solution unification methods proposed by other 
members of the research project team 
(anti-unification, splitting grammars, etc.). The 
proposed method in this research was not the 
best because of excessive enumeration with not 
very useful grammar extensions for some classes 
of problems.

Research Questions
● How to pick useful components out of a program?
● How to evaluate the equivalence and similarity of 

different program snippets?
● How to introduce useful program snippets into a 

program synthesis program for further, possibly 
more performant synthesis?

Program synthesis is the process of automatically producing a program which can satisfy a 
high level specification [3]. It is a hard problem which can take a long time using brute 
force algorithms.

One of the ways to optimize this is to limit the search space, so the synthesizer can reach a 
solution faster if one exists. One common way of doing this is to reduce the allowed degree 
of complexity in the produced program, which can be done by reducing the allowed nesting 
height of the statements.

This creates the problem of not being able to solve overly complex specifications, because 
they would require a more complex program than the above limitation imposes. To allow a 
solution to such problems while keeping the limitation, one can provide the algorithm with 
more abstractions [2]. This research explores ways of doing this automatically, via 
extending the program from common parts of the solutions to simpler problems, before 
tackling the complex problem.

Extending Program Synthesis Grammar with Subprograms Learned from 
Solutions to Simpler Problems

Proposed
Algorithm

Starting Grammar

ListOrNumber -> 1 | 2 | 3 … 13
ListOrNumber -> x
ListOrNumber -> times ListOrNumber ListOrNumber
ListOrNumber -> head ListOrNumber
ListOrNumber -> tail ListOrNumber
ListOrNumber -> cons ListOrNumber ListOrNumber | nil

Give different sets of examples, termed tasks
breadth-first-search, max search depth = 4

Examples [2, 4, 10] -> 12
[3, 5, 8] -> 15
[2, 3, 4] -> 9

[2, 4, 10] -> 8
[3, 5, 8] -> 10
[2, 3, 4] -> 6

Program (times 3 (head (tail x)))
[depth 4]

(times 2 (head (tail x)))
[depth 4]

Common Pattern- Grammar Extension ListOrNumber -> second-item = (head (tail x))

More Examples [2, 4, 10] -> [2, 4]
[4, 2, 8] -> [4, 2]
[8, 5, 13] -> [8, 5]

Program Extended  grammar:
(cons (head x) (cons second-item nil)) [depth 3]
Original  grammar:
(cons (head x) (cons (head (tail x)) nil)) [depth 5]

References
[1] David Detlefs, Greg Nelson, and James Saxe. Simplify: A theorem prover for program checking. Journal of 

the ACM, 52, 09 2003.
[2] Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L., Hewitt, L., Cary, L., Solar-Lezama, A., & 

Tenenbaum, J. B. (2021). Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep 
library learning. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming 
Language Design and Implementation, 835–850.

[3] Gulwani, S., Polozov, O., & Singh, R. (2017). Program synthesis. Foundations and Trends in Programming 
Languages, 4 (1-2), 1–119.

[4] Bootstrap Icons. https://icons.getbootstrap.com/

          Source Code 
github.com/boraini/HerbAutomaticAbstraction

Future Work
● Use of equivalence graphs for 

subprograms, as proposed by 
Detlefs, et al [1], in order to 
improve the conciseness of 
produced programs.

● The algorithm can be made into a 
program iterators as the ones 
found in Herb.jl in order to 
implement a system that refines 
itself as more simpler problems 
are solved.


