ŤUDelft

ZygosDB: An efficient read-only database for Genome-Wide Association Studies (GWAS)

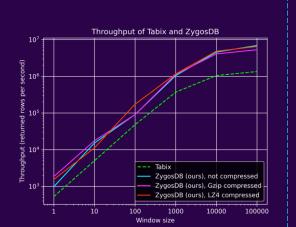
Author: Nick van Luijk¹ Supervisor: Niccolo Tesi¹ Responsible Professor: Marcel Reinders¹ ¹TU Delft N.vanLuijk@student.tudelft.nl, N.Tesi@tudelft.nl, M.J.T.Reinders@tudelft.nl

1 INTRODUCTION & OBJECTIVE

- Genome-Wide Association Studies (GWAS): Identify associations between genetic variants and traits.
- snpXplorer: Website for visualising SNPs (single-base mutations) and SVs (multi-base mutations) in GWAS summaries.
- **Tabix**: Popular genomic indexing tool, currently in use by snpXplorer.
- Challenge: Querying genomic datasets is slow.
- **Solution:** Developed a custom specialized read-only database optimized for query throughput.

How can an efficient read-only database be designed and implemented for querying chromosomal, positional data?

3 RESULTS


When returning small numbers of results, ZygosDB with Gzip compression is the fastest. As the window size increases, query throughput increases as well, with a not compressed ZygosDB database returning up to 7 million rows per second.

Tabix, baseline

ZygosDB (ours), not compressed

ZygosDB (ours), Gzip compressed

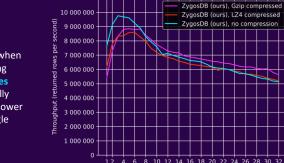

ZygosDB (ours), LZ4 compressed

Figure 3: The query throughput, measured in the number of rows returned per window size, for both Tabix and our database.

3 The maximum query thoughput is reached when using 3-5 threads. Using more threads decreases performance, eventually reaching throughputs lower than when using a single

thread.

Number of threads

Throughput with different number of threads

Figure 5: The multi-threaded query throughput with a window size of 100 000, measured with thread counts of 1-32.

2 METHOD

1. Implement database in Rust

- Custom binary format.
- Store all data sequentially.
- Encode positions using variable-length integers.
- Indices using B-trees for fast lookup.

2. Optimise query throughput

- Compress database using Gzip or LZ4.
- Resolve queries in parallel
 using multiple threads.

00 00 00 00 00 0E DB 1

Y 10 6F C6 B6 03
 C B6 03
 C B6 B6 03
 C B6 B6 B6 B6 B6
 C B7
 C B7

Figure 2: An example B-tree.

Figure 4: The speedup of ZygosDB over Tabix.

Speedup of ZygosDB over Tabix

1000

Window size

10000

100000

2

In a worst-case scenario, ZygosDB is approximately 2 times faster than Tabix. By increasing the window size, ZygosDB can reach throughputs that are over 5 times faster than Tabix.

4 CONCLUSION & FUTURE WORK

ZygosDB, our read-only database, specialised for storing and querying genomic datasets, has a **2-5 times higher query throughput** than Tabix.

Optimise further using:

- Profiling
- Specialised column types

Available at: https://github.com/TechnologicNick/zygos_db

3. Measure performance