By: Djoshua Moonen Supervisor: Stjepan Picek & Marina Krcek

Little or Large?

The effects of network size on AI explainability in Side-Channel Attacks

1. Knowledge Gap

Side-Channel Attacks

Side-Channel attacks are when a person or organization obtains information through the implementation of a computer system.

This work specifically looks at how encryption keys can be collected by observing power consumption during the encryption process

Research Question

In the literature, the benefits of reducing network complexity are mentioned. However, no evidence that backs this claim was found.

This lead us to ask: what are the effects of network size on AI explainability?

2. Experiment

Visualization

relation

Dataset

ASCAD:

Heatmap:

- Input/output
- Realistic •
- Frequently used
- Low computational overhead
 - **Architectures**

ZAID:

•

•

ASCAD:

- 5 blocks
- 1D convolution
- Average pooling
- Batch size 200
- Epochs 100 •
- Batch size 50 . •

1 block

Epochs 50

1D convolution

Average Pooling

The difference in area of interest likely stems from the different amount of convolutions are performed.

Heatmap as function

It seems to be the case that neither of the two models perform better when a misclassification occurs.

The model large in complexity was shown to be inconsistent, indicating lower levels of explainability.

Future work

The following topics show promise for future research:

4. Discussion

Heatmap overlay

Class level pattern

5. Conclusion

Conclusions

A reduction in complexity leads to improved explainability because of:

- No notable changes in the misclassification patterns
 - Improvement in classification
 - explainability of the ZAID model
 - The effect different datasets have.
 - How different model behave
 - Output from different visualization techniques

June 25th, 2020 **CSE3000**