Understanding Bit-vector Arithmetic in Z3

1. Introduction

« Z3 — a satisfiability modulo theories (SMT) solver — helps
developers by serving as a backend for formal verification tools.
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2. Research Questions

1. What techniques can Z3 use to solve QF BV problems?
« Exploratory literature study

2. Which techniques work well with which sets of problems?
« Experimental evaluation

3. How is Z3 able to use parallelization when solving problems?
« Literature study + experiments

« Sls is the best approach for most problems, especially easier ones.

» Polysat and int-blast are significantly better on certain datasets.

» Cube-and-conquer is useful between 8 and 32 CPU cores.
2 and 4 core setups work well only on harder problems.

« Portfolio solving could be used to compliment cube-and-conquer.
Polysat and sls are good candidates for this.

= Inthe future, automated configuration can be explored further.

3. How Z3 Solves Bit-vect
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Bit-vector Solving Techniques

Bit-blast Eagerly convert bit-vectors to boolean predicate logic,
then solve using the CDCL SAT solver.

Polysat Lazy bit-blasting — only bit-blast when necessary.
Perform dynamic simplifications.

Int-blast Convert to integers, simulating the behaviour of bit-
vectors, then solve using an integer theory solver.

SLS Keep a candidate solution and randomly mutate it until all
clauses are satisfied. Works in tandem with bit-blast.

4. Parallelism in Z3

Cube-and-conquer Split problem into sub-problems (cubes) and
solve independently.

Portfolio solving Run multiple solvers on the same problem
simultaneously.

Parallel SLS Run sls on another thread alongside bit-blast.

5. Experiments & Results
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VLSAT-3 Very Large Boolean SATisfiability benchmark suite
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