
Understanding Bit-vector Arithmetic in Z3
1. Introduction

• Z3 — a satisfiability modulo theories (SMT) solver — helps
developers by serving as a backend for formal verification tools.
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QF_BV Quantifier-free logic with only
fixed-size bit-vector and boolean
arithmetic.

2. Research Questions

1. What techniques can Z3 use to solve QF_BV problems?
• Exploratory literature study

2. Which techniques work well with which sets of problems?
• Experimental evaluation

3. How is Z3 able to use parallelization when solving problems?
• Literature study + experiments

6. Conclusions

• Sls is the best approach for most problems, especially easier ones.
• Polysat and int-blast are significantly better on certain datasets.
• Cube-and-conquer is useful between 8 and 32 CPU cores.

2 and 4 core setups work well only on harder problems.
• Portfolio solving could be used to compliment cube-and-conquer.

Polysat and sls are good candidates for this.
• In the future, automated configuration can be explored further.

3. How Z3 Solves Bit-vector Problems
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Bit-vector Solving Techniques
Bit-blast Eagerly convert bit-vectors to boolean predicate logic,

then solve using the CDCL SAT solver.
Polysat Lazy bit-blasting — only bit-blast when necessary.

Perform dynamic simplifications.
Int-blast Convert to integers, simulating the behaviour of bit-

vectors, then solve using an integer theory solver.
SLS Keep a candidate solution and randomly mutate it until all

clauses are satisfied. Works in tandem with bit-blast.

4. Parallelism in Z3

Cube-and-conquer Split problem into sub-problems (cubes) and
solve independently.

Portfolio solving Run multiple solvers on the same problem
simultaneously.

Parallel SLS Run sls on another thread alongside bit-blast.

5. Experiments & Results
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