
Understanding Bit-vector Arithmetic in Z3
1. Introduction

• Z3 — a satisfiability modulo theories (SMT) solver — helps
developers by serving as a backend for formal verification tools.

variables
⏞𝑥, 𝑦 ∈

4 bits
⏞BV[4] ;

BV formula
⏞⏞⏞⏞⏞𝑥 & 𝑦 = 𝑦

BV formula
⏞⏞⏞⏞⏞𝑥 + 𝑦 < 11 ∨

BV formula
⏞𝑥 ⋅ 𝑦 = 2⏟⏟⏟⏟⏟⏟⏟⏟⏟

boolean formula

⟶
𝑍3 𝑥 = 4

𝑦 = 14
𝑥 = 14
𝑦 = 15

1 1 1 0 0 1 1 1 0 1

925 −99 AGCAC
TCGTG

QF_BV Quantifier-free logic with only
fixed-size bit-vector and boolean
arithmetic.

2. Research Questions

1. What techniques can Z3 use to solve QF_BV problems?
• Exploratory literature study

2. Which techniques work well with which sets of problems?
• Experimental evaluation

3. How is Z3 able to use parallelization when solving problems?
• Literature study + experiments

6. Conclusions

• Sls is the best approach for most problems, especially easier ones.
• Polysat and int-blast are significantly better on certain datasets.
• Cube-and-conquer is useful between 8 and 32 CPU cores.

2 and 4 core setups work well only on harder problems.
• Portfolio solving could be used to compliment cube-and-conquer.

Polysat and sls are good candidates for this.
• In the future, automated configuration can be explored further.

3. How Z3 Solves Bit-vector Problems

Strategy and Tactics
then then then

par-or

par-then then then

Initial query ctx-simplify propagate-values simplify

split-clause qsat qe ctx-simplify smt

The Conflict-Driven Clause Learning SAT Solver

Learn 𝐶5 : ¬𝑎 ∨ ¬𝑏, then backjump

Initial query

𝐶1 : ¬𝑎 ∨ ¬𝑏 ∨ 𝑐 ; 𝐶3 : ¬𝑑
𝐶2 : ¬𝑐 ∨ ¬𝑎 ∨ 𝑑 ; 𝐶4 : ¬𝑒 ∨ 𝑓

𝑎 = ⊤
𝑒 = ⊤

⇒
𝐶4

𝑓 = ⊤

𝑏 = ⊤

⇒
𝐶1

𝑐 = ⊤

⇒
𝐶2

𝑑 = ⊤

Conflict:

𝑑 = ⊤
𝐶3 : ¬𝑑

𝑎 = ⊤

⇒
𝐶5

𝑏 = ⊥

𝑐 = ⊤

⇒
𝐶2

𝑑 = ⊥

𝑒 = ⊤

⇒
𝐶4

𝑓 = ⊥

Model
𝑎 = ⊤
𝑏 = ⊥
𝑐 = ⊤
𝑑 = ⊥
𝑒 = ⊤
𝑓 = ⊥

Bit-vector Solving Techniques
Bit-blast Eagerly convert bit-vectors to boolean predicate logic,

then solve using the CDCL SAT solver.
Polysat Lazy bit-blasting — only bit-blast when necessary.

Perform dynamic simplifications.
Int-blast Convert to integers, simulating the behaviour of bit-

vectors, then solve using an integer theory solver.
SLS Keep a candidate solution and randomly mutate it until all

clauses are satisfied. Works in tandem with bit-blast.

4. Parallelism in Z3

Cube-and-conquer Split problem into sub-problems (cubes) and
solve independently.

Portfolio solving Run multiple solvers on the same problem
simultaneously.

Parallel SLS Run sls on another thread alongside bit-blast.

5. Experiments & Results

simplify propagate-values solve-eqs ctx-simplify simplify smt

SMT-COMP Sampled from the 2024 SMT-LIB Benchmark Release

Fig. 1. CD: Whole dataset

Fig. 2. CD: spear family Fig. 3. sls vs bit-blast Fig. 4. sls vs polysat

VLSAT-3 Very Large Boolean SATisfiability benchmark suite

Fig. 5. Family a (unsatisfiable)

Fig. 6. Family g (satisfiable) Fig. 7. Cactus plot: Family g (satisfiable)

Smart Contract Verification Parallel Scaling

Author: Veselin Mitev
vmitev@tudelft.nl

Supervisor: Dennis Sprokholt
Responsible professor: Soham Chakraborty

	Strategy and Tactics
	The Conflict-Driven Clause Learning SAT Solver
	Bit-vector Solving Techniques

