Understanding Bit-vector Arithmetic in Z3

1. Introduction

« Z3 — a satisfiability modulo theories (SMT) solver — helps
developers by serving as a backend for formal verification tools.

N 4 bi
variables its BV formula
z,y € BV[4]; z&y=y
BV formul Z3 z=4 z=14
ormula
BV formula y = 14 Y= 15

r+y<llVvz-y=2

boolean formula

[1]x]aJeJea]2]1]e]1] QF_BV Quantifier-free logic with only
/b N\ fixed-size bit-vector and boolean
925 -99 Ageac

Ageac arithmetic.

2. Research Questions

1. What techniques can Z3 use to solve QF BV problems?
« Exploratory literature study

2. Which techniques work well with which sets of problems?
« Experimental evaluation

3. How is Z3 able to use parallelization when solving problems?
« Literature study + experiments

« Sls is the best approach for most problems, especially easier ones.

» Polysat and int-blast are significantly better on certain datasets.

» Cube-and-conquer is useful between 8 and 32 CPU cores.
2 and 4 core setups work well only on harder problems.

« Portfolio solving could be used to compliment cube-and-conquer.
Polysat and sls are good candidates for this.

= Inthe future, automated configuration can be explored further.

3. How Z3 Solves Bit-vect

Strategy and Tactics
then then then
(Initial query)—»(ctx- simplify)—b(propagate-values)—b(simplify)
par-or T

Initial query
Crimav-bve; Cy:
Cy:=cV-aVd; Cy:

“o Ao -
IR
e

Bit-vector Solving Techniques

Bit-blast Eagerly convert bit-vectors to boolean predicate logic,
then solve using the CDCL SAT solver.

Polysat Lazy bit-blasting — only bit-blast when necessary.
Perform dynamic simplifications.

Int-blast Convert to integers, simulating the behaviour of bit-
vectors, then solve using an integer theory solver.

SLS Keep a candidate solution and randomly mutate it until all
clauses are satisfied. Works in tandem with bit-blast.

4. Parallelism in Z3

Cube-and-conquer Split problem into sub-problems (cubes) and
solve independently.

Portfolio solving Run multiple solvers on the same problem
simultaneously.

Parallel SLS Run sls on another thread alongside bit-blast.

5. Experiments & Results
(simplify)—»(propagate—values)—{solve-eqs)—-(ctx-simplify)—{simplify

SMT-COMP Sampled from the 2024 SMT-LIB Benchmark Release

' 2 3 4
;‘E o=
Unsscfable
sls int-blast
1000
polysat bitblast

Fig. 1. CD: Whole dataset E o
H

1200
1000
00

&0

el eme ()

00
D
=]
| 2 3 4 20 0] &

o o i
) intbl
WYS“;‘E blase T % o 10w 13 T 2 4o e 0 1w 170
sls bit-blast

£
bicblast vl e (5) polysa vl tm (5)

Fig. 3. sls vs bit-blast Fig. 4. sls vs polysat

Fig. 2. CD: spear family

VLSAT-3 Very Large Boolean SATisfiability benchmark suite

cD
i

—— bit-bl
) 2 3 4 bit-blast

10°1 —5— polysat
—*— int-blast
int-blast bit-blast sls
polysat sls

q

e 102
Fig. 5. Family a (unsatisfiable) E
2
=,
1 2 3 4 10!

sls J —L polysat

bit-blast int-blast

0 20 40 60 80
Instance solved (sorted by time to solve)

Fig. 6. Family g (satisfiable) Fig. 7. Cactus plot: Family g (satisfiable)

Smart Contract Verification Parallel Scaling

| 2 3 4 5 6 7

= . |

g

5 | -

clo ~E- bit-blast -

K o polysat 32 cores 2 cores
100 ¢ int-blast 16 cores 4 cores

s 64 cores L—— I core
8 cores

T 3 35 4 § 6 7
Instance solved (sorted by time to solve)

Author: Veselin Mitev
vmitev@tudelft.nl

z
TUDelft

Supervisor: Dennis Sprokholt
Responsible professor: Soham Chakraborty

	Strategy and Tactics
	The Conflict-Driven Clause Learning SAT Solver
	Bit-vector Solving Techniques

