

Urban Change Detection Based on Remote Sensing Data

How are RNNs applied in the context of urban change detection?

Ivan Virovski I.Virovski-1@student-tudelft.nl Supervisor: Desislava Petrova-Antonova Responsible Proffesor: Prof. Jan van Gemert

1. Introduction

- **Urbanisation:** drastically transformed landscapes globally, causing significant changes in land use, infrastructure, and socio-economic dynamics.
- Urban Change Detection: identification and analysis of transformations within urban areas over time.

Figure 1:Pre- and Post-Change Images with Corresponding Change Map [1]

3. Experiment

- **Experiment Goal:** Evaluate the effectiveness of RNNs for Urban Change Detection, by training and evaluating a suitable model on different datasets, each with unique properties.
- Choosing RNN method:
 - **LSTM:** designed to capture long-term dependencies and manage vanishing gradient problems. [5]
 - **GRUs:** computational efficiency and faster training times. [6]
 - **Attention-based RNN:** focuses on the most relevant parts of the input sequence. [4]
 - SiamCRNN: combination of CNN and RNN. [3]
- Choosing datasets:
 - **Levir-CD:** high-resolution, medium spectral range.
 - **CDD:** low-resolution, small spectral range, seasonal variations.
 - **DSIFN-CD:** low-resolution, medium spectral range, diverse urban scenarios.
 - **OSCD:** medium resolution, large spectral range, complex urban environments.

2. Recurrent Neural Networks

- Neural network tailored for processing sequential data.
- Retention of information from previous inputs.
- Adept at tasks, such as time series analysis and temporal pattern recognition.

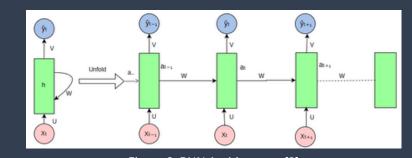


Figure 2: RNN Architecture [2]

4. Results and Discussion

Evaluation Criteria	Accuracy		Evaluation Criteria	Accuracy
Recall Rate	0.5619		Recall Rate	0.9827
Precision Rate	0.4217		Precision Rate	0.6218
Overall Accuracy (OA)	0.9375		Overall Accuracy (OA)	0.8004
F1 Score	0.4819		F1 Score	0.7617
Intersection over Union (IoU)	0.3174		Intersection over Union (IoU)	0.6151
Kappa Coefficient	0.4493		Kappa Coefficient	0.6044
Figure 3: OSCD Results		r i	Figure 4: DSIFN-CD Res	
Evaluation Criteria	Accuracy			Accuracy 0.8866
Evaluation Criteria Recall Rate	Accuracy 0.8904		Evaluation Criteria	Accuracy
Evaluation Criteria Recall Rate Precision Rate	Accuracy		Evaluation Criteria Recall Rate	Accuracy 0.8866
Evaluation Criteria Recall Rate	Accuracy 0.8904 0.8104		Evaluation Criteria Recall Rate Precision Rate	Accuracy 0.8866 0.7318
Evaluation Criteria Recall Rate Precision Rate Overall Accuracy (OA)	Accuracy 0.8904 0.8104 0.9838		Evaluation Criteria Recall Rate Precision Rate Overall Accuracy (OA) F1 Score Intersection over Union (IoU)	Accuracy 0.8866 0.7318 0.9483 0.8018 0.6692
Evaluation Criteria Recall Rate Precision Rate Overall Accuracy (OA) F1 Score	Accuracy 0.8904 0.8104 0.9838 0.8485		Evaluation Criteria Recall Rate Precision Rate Overall Accuracy (OA) F1 Score	Accuracy 0.8866 0.7318 0.9483 0.8018

• High-performance on Levir-CD suggests the model can accurately detect significant urban changes.

- High-performance on CDD suggests the model can handle seasonal changes.
- High-performance on DSIFN-CD suggests the model can handle diverse urban environments.
- Lower-performance on OSCD suggests the model has difficulties with complex urban environments and low spatial resolution.

- complex urban structures.
- tasks.
- Future Work:
 - resolution.

[1] Xin Wang, Sicong Liu, Peijun Du, Hao Liang, Junshi Xia, and Yunfeng Li. Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing, 10(2), 2018.

Sensing, (4):2848-2864, 2020. Information Sciences, V-2-2020:541-547, 2020.

[6] Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.

TUDelft

5. Conclusion

• These findings underscore the robustness of the SiamCRNN model in detecting urban changes across various datasets. • Challenges on datasets with higher spectral range and

• Importance of spatial resolution in urban change detection

• Verify performance of SiamCRNN model on other datasets, especially on datasets with lower spatial

• Explore alternative RNN methods such as LSTM, GRU, and Attention-based RNNs for Urban Change Detection.

References

[2] Sushmita Poudel. Recurrent neural network (rnn) architecture explained. [3] Hongruixuan Chen, Chen Wu, Bo Du, Liangpei Zhang, and Le Wang. Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network. IEEE Transactions on Geoscience and Remote

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, 2017.

[5] M. Papadomanolaki, M. Vakalopoulou, and K. Karantzalos. Urban change detection based on semantic segmentation and fully convolutional lstm networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial