Identifying Speaking and Drinking Events Within
Audio Recordings for Multiactivity Analysis

1. Introduction

« Multiactivity: multitasking in a social
context [1]

» Reveal hidden rules of human social
behaviour [1]

* When to drink and when to speak?

» Use audio to identify these actions

“How feasible is it fo use audio
recordings captured from a drinking
glass to identify speaking and drinking
events in social interactions?” =

2. Method

1. Record audio from a drinking glass H
» Speaking
 Drinking
* Ambient noise

2. Extract audio features [2]
» Mel-Frequency Cepstral
Coefficients
» Spectral (Centroid, Bandwidth,
Contrast, Roll-Off)
» Zero Crossing Rate & Root Mean
Squared Energy

3. Compare different Machine
Learning models [3]

» K-Nearest Neighbours
Linear Regression
Support Vector Machine
Decision Tree
Random Forest
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3. Results

Audio Classification Performance: Training Sample Length (F; score)
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 Linear classifiers: 100% accuracy after 2-second window
« Non-linear classifiers: Fluctuate between 90% and 100%

Audio Classification Performance: Extracted Audio Features (F, score)
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- Average 97.9%

* Worse: ZCR & RMSE - Average 83.8%

Audio Classification Performance:
Noisy Environments (SVM Confusion Matrices)
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5.

6.

Limitations

Small sample size

Audio recorded of one person only

ML model parameters not finetuned

Noisy environments were simulated and not
collected from real-life

Use of audio alone loses information on
gestures, facial expressions, etc.,
information within audio data limited for
further in-depth analysis

Future Work

Use inertial sensors to detect drinking action
in noisy environments

More diverse audio sources

Continuous activity recognition over longer
audio recordings

Conclusion

Clean audio data can reach 100%
classification accuracy

Noisy environments less accurate, drinking
audio more obscured

MFCC features perform the best

Linear ML classifiers more stable

References:

[1] P. Haddington, T. Keisanen, L. Mondada, and M. Nevile, Multiactivity in
Social Interaction: Beyond multitasking. John Benjamins Publishing
Company, 2014

4. Simulate noisy environments [4]
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» Podcast: simulating other speakers
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« Music has a lesser
negative effect than
a noisy room or the
presence of other
speakers
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