TinyML-Empowered Indoor Positioning with Light: P
Model Optimization using Neural Architecture Search TUDelft

Neel Lodha' RanZhu'! QingWang"*
Department of EEMCS, Delft University of Technology

Introduction Methodology Results
lggg;agfﬁsﬂodnénlgouzggoi \;Eie tljegrlkjt F;?aihcgmng System based on the Received Signal Strength Previous Research Model Sive | Model Sive Position Accuracy | Position Accuracy e
g ploy ppberry : Zhu et al. [1] used model architectures like Multi-Layer Perceptron (MLP), Random Forest, Support Model (KB) PQ (KB) (mm) PQ (mm) L (me)
- : : : atency (ms
vt i o 2 05 BB e S vt oy o R Gl B R [Clesn B | *7
LD g TX © © 0 © © O | Eeen favers 5 0L 200 Jns AT PECHIVEY Baseline | 5168 1303 20.7|14.2 [17.6 [21.7[16.2 [19.0 |283
o0 0o ao activation function, as the baseline for comparison.
°c0e000 N | Architecture S " MLP_SRAM|553 114 10.0/74 1158 |20.1/16.9 18.9 |18
L= SHTal ATETITECTHTE Seatt CNN_Flash (5689 1446 64 41 60 |19.6 121 136 334
Movable RX f——2/—— We explore more model architectures like Convolution Neural Networks (CNN) and use Neural
i /4#/ / Architecture Search (NAS) to find the best performing model. Table 4. Comparison of top models found by NAS. PQ stands for Post Quantization.
(a) Testbed (b) lllustration With the help of NAS, we try to find different architectures focused on optimizing the following MLP SRAM

when deployed on a Raspberry Pi Pico which only has 264 K B of SRAM and 2M B of flash memory.

Figure 1. DenseVLC testbed, a) actual testbed, b) testbed illustration. Linear(36, 256) — Linear(256, 256) — Hardswish — Linear(256, 256) — Hardswish —

= Model accuracy: Positioning error (mean squared error) on the test set. Linear(256, 256) — Tanh — Linear(256, 2) — Sigmoid
Research Questions = Inference Latency: How fast is the inference of the model when deployed on the Pico. CNN_Flash:
How can we improve the performance (accuracy, inference latency) of a VLP system running Conv2d(1, 32, kernel=1, padding=1) — BatchNorm2d(32) — LeakyRelLU — DepthwiseSepa-
TinyML on resource-constrained devices? architecture rableConv2d(32, 64, kernel=3) — BatchNorm2d(64) — LeakyRelLU — DepthwiseSeparable-
, . , , Search Space Somet Statene [Y iiommance Conv2d(64, 128, kernel=3) — BatchNorm2d(128) — Tanh — MaxPool2d(2) — Flatten —
= \Which traditional neural network architectures (Convolutional Neural Networks, A T I~ A Sty Linear(512, 1024) — Tanh — Linear(1024. 512) — RelLU — Linear(512, 512) — RelU —
Multilayer Perceptrons) are most suitable for our RSS-based VLP system. D ate of A Linear(512, 256) — Hardswish — Linear(256, 2) — Sigmoid

= How can we find architectures using Neural Architecture Search which satisfy the

. .. Fiegure 3. Abstract illustration of Neural Architecture Search methods [2
hardware constraints of the Raspberry Pi Pico. . 2]

= How does the density of the fingerprint dataset impact the model’s performance? — . Discussion
— ConvExS Method Trial Type
MaxPool Random Multi-trial = NAS found performant models under the hardware constraints with good accuracy and
i . i GridSearch Multi-trial Inference |atenc .
EXIStIng Data Preprocessmg RegularizedEvolution | Multi-trial . Y o
(2) C2) DARTS One-shot = |[nconsistent results from quantization.
351, 384 samples of RSS values at different locations collected from the DenseVLC testbed as \ (E;NAi — 8ne-SEOE » Room for improvement using more advanced quantization techniques like quantization
shown in Figure 1. vy Umbe ne-sho i i ictillat
g RandormOneShot— One-<hor aware training, pruning and knowledge distillation.
% 10 X Proxyless One-shot = Data augmentation reduces the labour intensive task of data collection, while maintaining

| | reasonably good position accuracy.
, Table 1. Various NAS search strategies [3] ,
Figure 4. One shot strategy [2] = Some inconsistencies found where augmented dataset would perform worse which might

indicate over-fitting or due to the randomness involved in the model’s training process.

é j;: VLP Dataset Data Preprocessing—» Clean and Layer Type OpthﬂS
- - (Raw) Augmented Data 32, 64,128, 256, 512,
FC Layer
50 50 Neural Architecture Search ;‘0537 5018R LU ELU ConC'.USion
. . eLU, LeakyRelU, ,
o 10 B o 0 | o -— % T3 o . { v Activation Function e hVT RSN
s tem) N Are=wish, 1anh, >Igmol In our research, we used Neural Architecture Search (NAS) to find efficient MLP and CNN archi-
(a) Raw data (granularity 1em) (b) Clean data (granularity 1em) MLP Search Space CNN Search Space L . L . . :
5 Y . Y Table 2. MLP Search Space tectures for Visible Light Positioning using Received Signal Strength data. Our models target the
Hardware ’
Constraints Raspberry Pi Pico and improve positioning accuracy by 50% compared to prior work by Zhu et al.
L0 10 Layer Type Options | 1], while achieving a low inference latency under 100ms on the Pico.
s iinninn i |l s [) }‘ »{ .] Channels: 16,32,64,128,256 We also showed that our models maintain good performance when trained with augmented data,
. ENAS Strategy DARTS Strategy . i .
S Lo) Kernel Size: 3,5
_awfiHINEEE R _ 0 2D Convolution nel iz helping reduce the manual effort needed for data collection.
[ERREEEREE S 068 Stride: O, 1
= 1501 o 150 .
. D - J Padding: O, 1 References
R I . , Deployement and Evaluation | 2D Batch Normalization | Channels: 16,32,64,128,256
Mo - 50 2D Pooling Type: Average, Maximum [1] R. Zhu, M. Van den Abeele, J. Beysens, J. Yang, and Q. Wang, “Centimeter-level indoor visible light positioning,” IEEE Communications
INT-8 Q tizati :
iU e - Full Connected Layer 32, 64, 128, 256, 512, 1024 Magazine, vol. 62, n0. 3, po. 48-53, 2024,
' X-axis (cm) ' x-axis (cm) ¢ Rel U, LeakyRelU, ELU [2] T.Elsken,J. H. Metzen, and F. Hutter, “Neural architecture search: Asurvey,” 2019. [Online]. Available: https://arxiv.org/abs/1808.05377
(c) Downsampled data (d) Augmented Data (granularity [Evaluation] Activation Function HardS’WiSh TanH ,Si m’oid [3] Microsoft, “Neural Network Intelligence,” 1 2021. [Online]. Available: https://github.com/microsoft/nni
(granularity 8cm) increase from 8cm to lem) ’ 016

Table 3. CNN Search Space
Figure 2. Data pre-processing proposed by Zhu et al. [1] Figure 5. Methodology workflow

Research Project Neel Lodha

https://arxiv.org/abs/1808.05377
https://github.com/microsoft/nni
mailto:neellodha@tudelft.nl

	References

