
TinyML-Empowered Indoor Positioning with Light:
Model Optimization using Neural Architecture Search

Neel Lodha 1 Ran Zhu 1 QingWang 1

1Department of EEMCS, Delft University of Technology

Introduction

Indoor positioning using a Visible Light Positioning System based on the Received Signal Strength

(RSS) of light deployed on a Raspberry Pi Pico.

(a) Testbed (b) Illustration

Figure 1. DenseVLC testbed, a) actual testbed, b) testbed illustration.

. Research Questions

How can we improve the performance (accuracy, inference latency) of a VLP system running

TinyML on resource-constrained devices?

Which traditional neural network architectures (Convolutional Neural Networks,

Multilayer Perceptrons) are most suitable for our RSS-based VLP system.

How can we find architectures using Neural Architecture Search which satisfy the

hardware constraints of the Raspberry Pi Pico.

How does the density of the fingerprint dataset impact the model’s performance?

Existing Data Preprocessing

351, 384 samples of RSS values at different locations collected from the DenseVLC testbed as

shown in Figure 1.

(a) Raw data (granularity 1cm) (b) Clean data (granularity 1cm)

(c) Downsampled data

(granularity 8cm)
(d) Augmented Data (granularity

increase from 8cm to 1cm)

Figure 2. Data pre-processing proposed by Zhu et al. [1]

Methodology

Previous Research

Zhu et al. [1] usedmodel architectures likeMulti-Layer Perceptron (MLP), Random Forest, Support

Vector Machine (SVM), for the VLP system. In our research, we will use their MLP model which

5 hidden layers consisting of 256, 512, 1024, 512 and 256 neurons respectively with ReLU

activation function, as the baseline for comparison.

Neural Architecture Search

We explore more model architectures like Convolution Neural Networks (CNN) and use Neural

Architecture Search (NAS) to find the best performing model.

With the help of NAS, we try to find different architectures focused on optimizing the following

when deployed on a Raspberry Pi Picowhich only has 264KB of SRAM and 2MB of flashmemory.

Model accuracy: Positioning error (mean squared error) on the test set.

Inference Latency: How fast is the inference of the model when deployed on the Pico.

Figure 3. Abstract illustration of Neural Architecture Search methods [2]

Figure 4. One shot strategy [2]

Method Trial Type

Random Multi-trial

GridSearch Multi-trial

RegularizedEvolution Multi-trial

DARTS One-shot

ENAS One-shot

GumbelDARTS One-shot

RandomOneShot One-shot

Proxyless One-shot

Table 1. Various NAS search strategies [3]

Figure 5. Methodology workflow

Layer Type Options

FC Layer
32, 64, 128, 256, 512,

1024, 2048

Activation Function
ReLU, LeakyReLU, ELU,

Hardswish, Tanh, Sigmoid

Table 2. MLP Search Space

Layer Type Options

2D Convolution

Channels: 16,32,64,128,256

Kernel Size: 3, 5

Stride: 0, 1

Padding: 0, 1

2D Batch Normalization Channels: 16,32,64,128,256

2D Pooling Type: Average, Maximum

Full Connected Layer 32, 64, 128, 256, 512, 1024

Activation Function
ReLU, LeakyReLU, ELU,

Hardswish, TanH, Sigmoid

Table 3. CNN Search Space

Results

Model
Model Size

(KB)

Model Size

PQ (KB)

Position Accuracy

(mm)

Position Accuracy

PQ (mm)
Inference

Latency (ms)
Raw Clean 8cm Raw Clean 8cm

Baseline 5168 1303 20.7 14.2 17.6 21.7 16.2 19.0 283

MLP_SRAM 553 114 10.0 7.4 15.8 20.1 16.9 18.9 18

CNN_Flash 5689 1446 6.4 4.1 6.0 19.6 12.1 13.6 334

Table 4. Comparison of top models found by NAS. PQ stands for Post Quantization.

MLP_SRAM

Linear(36, 256) → Linear(256, 256) → Hardswish → Linear(256, 256) → Hardswish →
Linear(256, 256) → Tanh → Linear(256, 2) → Sigmoid

CNN_Flash:

Conv2d(1, 32, kernel=1, padding=1) → BatchNorm2d(32) → LeakyReLU → DepthwiseSepa-

rableConv2d(32, 64, kernel=3) → BatchNorm2d(64) → LeakyReLU → DepthwiseSeparable-

Conv2d(64, 128, kernel=3) → BatchNorm2d(128) → Tanh → MaxPool2d(2) → Flatten →
Linear(512, 1024) → Tanh → Linear(1024, 512) → ReLU → Linear(512, 512) → ReLU →
Linear(512, 256) → Hardswish → Linear(256, 2) → Sigmoid

Discussion

NAS found performant models under the hardware constraints with good accuracy and

inference latency.

Inconsistent results from quantization.

Room for improvement using more advanced quantization techniques like quantization

aware training, pruning and knowledge distillation.

Data augmentation reduces the labour intensive task of data collection, while maintaining

reasonably good position accuracy.

Some inconsistencies found where augmented dataset would perform worse which might

indicate over-fitting or due to the randomness involved in the model’s training process.

Conclusion

In our research, we used Neural Architecture Search (NAS) to find efficient MLP and CNN archi-

tectures for Visible Light Positioning using Received Signal Strength data. Our models target the

Raspberry Pi Pico and improve positioning accuracy by 50% compared to prior work by Zhu et al.

[1], while achieving a low inference latency under 100ms on the Pico.
We also showed that our models maintain good performance when trained with augmented data,

helping reduce the manual effort needed for data collection.

References

[1] R. Zhu, M. Van den Abeele, J. Beysens, J. Yang, and Q. Wang, “Centimeter-level indoor visible light positioning,” IEEE Communications

Magazine, vol. 62, no. 3, pp. 48–53, 2024.

[2] T. Elsken, J. H.Metzen, and F. Hutter, “Neural architecture search: A survey,” 2019. [Online]. Available: https://arxiv.org/abs/1808.05377

[3] Microsoft, “Neural Network Intelligence,” 1 2021. [Online]. Available: https://github.com/microsoft/nni

CSE3000: Research Project Neel Lodha

https://arxiv.org/abs/1808.05377
https://github.com/microsoft/nni
mailto:neellodha@tudelft.nl

	References

