Introduction

Abstract Syntax Tree (AST) Differencing

How to find differences between two ASTs T; and T,,?
Create mappings between similar nodes;

1
I 2. Computerequired actionsto getfrom T; to T,

(insert, delete, update, move);

Gumtree Greedy Algorithm

1.
2.

3.

Top-down phase: matches equal subtrees;

Bottom-up phase: matches each node in T; to best
candidate nodein T,;

Recovery: after every bottom-up match, runs optimal
algorithm on matched subtrees up to maxSize to match
missed nodes;

Stability

Requires diff(x, y) = diff(y, x);

Provides reversibility and consistency in tools like Git;
Stable bottom-up phase: only matches nodesin T; to
nodein T, if both are best candidates of each other;

HyperDiff

Diff framework that leverages HyperASTs: novel data
structure that deduplicates repeated subtrees across and
within versions;

Allows for faster lazy evaluation of HyperASTs;

Gumtree Greedy is implemented, Gumtree Stable is not;

Research Questions

What are the trade-offs between stability and
performance when using Gumtree Stable?

How does lazy evaluation made possible by HyperDiff
affect the performance of Gumtree Stable and Greedy?

Methodology

Implement Gumtree Stable & Lazy Stable in HyperDiff
using reference Java implementation;
Benchmark Gumtree variants on 1000+ Java file pairs
with various values of maxSize;
Compare results using various pairwise statistics:

B Runtime A: mean & median (B - A);

. RBC: Effect size; -1 = A faster, +1 = B faster;

. Log-ratio: Mean speedup (%); >0 = A faster;

. Wilcoxon signed-rank test: significance;

4

Results are statistically significant with p < 10716 (Wilcoxon)
Greedy vs Stable
* Greedy slightly outperforms Stable on most files
(median >0, RBC < 0);
» Stable becomes faster on average as maxSize grows,
implying it has faster recovery;
Lazy vs non-lazy

e L

azy variants consistently outperform non-lazy counterpart,

both on average and on most files;

Responsible professor:

[]
] Contactinfo
[|

Author: Elias Hoste
Email: e.r.hoste@student.tudelft.nl
Supervisor: Quentin Le Dilavrec

Carolin Brandt

Runtime A (ms)

Rank-biserial correlation (RBC)

Relative speedup (%)

=B~ Greedy vs Stable
-©~ Lazy Greedy vs Lazy Stable

=©— Greedy vs Lazy Greedy
—/A— Stable vs Lazy Stable

Runtime difference, RBC, and speedup vs maxSize
; . Dashed = mean, Solid = median

____4--==—8

—15 _,,,Qﬁ-:::t::,‘:QE,‘:::&:::,—,

150
maxSize

Conclusion

RQ1:

Greedy is slightly faster on most file pairs, but Stable is
faster on average, like on codebases;

Stable can avoid costly recovery on some files using more
restrictive mapping criteria;

RQ2:

HyperDiff lazy evaluation optimizes both Greedy & Stable
equally and is a viable strategy for scaling

	Untitled Section
	Slide 1

