
Objective
The objective of this study is to answer
the question of “how domain
perturbations affect different types of
GNN architectures?” by conducting an
investigation into the architectures that
are required to be stable against
stochastic perturbation, and in the
project’s scope, Traffic forecasting
problems. The stability property of each
architecture will be quantified and put
on comparison to determine how they
perform under topology shifts.
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Conclusion
In conclusion, we presented a comparative analysis of each model’s overall performance and made
preliminary findings regarding the connection between spatial graph embeddings and overall graph
performance following the stochastic perturbation. Although there is a lack of prior research on the
relationship between spatial embedding and overall graph performance, our analysis has revealed
significant differences in model performance, and display that some models are superior under stochastic
perturbation.   

Figure 1: The research methodology employed

Comparison AnalysisLimitations
The number of architectures under investigation is limited due to in appropriate equipment for a large learning
task such as Traffic Forecasting. To fully comprehend the relationship between spatial embedding and overall
graph performance, more models and settings should be investigated to draw a broader conclusion on these
relationships
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Practical Aplication Investigation

Graphs, graphs are everywhere, appearing in
applications ranging from the well-known fraud
detection in X [2] to graph recommendation systems
[3]. While many of these problems have been
thoroughly researched over the past decade, the
application of Graph Neural Networks (GNN) to traffic
forecasting is still a relatively recent development.

Background

Traffic forecasting problems using standard PEMS-BAY
dataset constructs by a graph G = (V, E) where V and E
stand for vertices (sensors) and edges (road link),
respectively, and represented by an adjacency matrix
with pairwise distance between 325 sensors (see figure
11). Each of the sensor records the speed and number
of vehicles through every 5-minute interval, divided into
12 time steps, and our task is to predict the next time
step.

Figure 1:  The GNN method to learn this problem can be
divided into spatial and temporal parts. While the
temporal capturing mechanism is well-studied [3], more
investigation is needed to further study the spatial
capturing mechanism. Hence, we place a hook to
capture the resulting graph after feedforward the input
through the spatial capturing layer.

Figure 2:  The A3TGCN architecture has
a spatial capturing mechanism at every
time step X_t through a T-GCN model
[4] that first captures both the spatial
and temporal information of the data,
then leverages the use of attention
mechanism to detect patterns in the
concatenated temporal and spatial
space. Within the T- GCN model, we
can place a hook at the GCN layer
which handles the spatial capturing
information. We will replace GCN with
TagConv in the GCN layer to create a
new architecture called A3TTAG.hook

Figure 3:  Graph Multi-Attention
Network (GMAN) [5] leverages the use
of the attention mechanism in GATConv
in both spatial and temporal capturing
domains. It follows an encoder-decoder
structure, which consists of L (L ∈ N)
Spatial-Temporal Attention Block
(STAtt). We will focus on the spatial
capturing mechanism of the model,
which happens in a STAtt block. A hook
will be implemented to extract the
spatial attention described here, in
both encoder and decoder.

hook

Metric scores for stability property of
spatial graph embedding

Cosine Similarity

Euclidean Distance

We represent A as graph embedding before the in-
put graph being perturbed, while B is the graph
embedding of the perturbed input graph

Evaluation metric for final output

Where y_i is the ground truth, y^_i is the model
prediction of the perturbed input

A3TGCN

A3TTAG

GMAN

Figure 4:  the graph embedding similarity scores of cosine similarity are
consistent, with the fluctuations shown to be minor, ranging from 0.98 to
1 (highly stable)

Figure 5:  The similarity score of euclidean distance following with cosine
similarity fluctuates only around 0.75 and 1.5, display- ing a high stability
property in both metric scores.

Figure 6:  The graph embedding similarity scores of cosine similarity are
pertained, with the fluctuations are shown to be minor, ranging from
0.994 to 1 (highly stable).

Figure 7:  The similarity score of euclidean distance differs significantly for
A3TTAG, which fluctuates around the region of 5 and 23, followed with
cosine similarity fluctuates only around 0.75 and 1.5

Figure 8: 10% perturbation, it ranges from 0.25 to 0.35. This significant
difference in cosine similarity scores highlights substantial disparities in
the spatial embeddings between perturbed and non-perturbed graphs
within the GMAN architecture

Figure 9: with 10% perturbation, the scores range from 300
to 600, showing a dramatic difference compared to the 10%
perturbation of both A3TGCN/A3TTAG architectures. These frequency
ranges highlight the unstable nature of the spatial attention mechanism
within the GMAN architecture

Figure 10:  To improve the illustration of the connection between the per-
turbation ratio and each model’s final output performance, we
add a 5% perturbation to the equation. The results show that
A3TGCN and A3TTAG perform better than GMAN under
stochastic edge perturbation. On the other hand, GMAN per-
forms better at baseline than these two architecture
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Dataset

Figure 11: PEMS-BAY visualization [6] of 325 sensors distributed across California
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