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The number of architectures under investigation is limited due to in appropriate equipment for a large learning {lo=- Baseline (ASTIAG)
task such as Traffic Forecasting. To fully comprehend the relationship between spatial embedding and overall
graph performance, more models and settings should be investigated to draw a broader conclusion on these
relationships

Performance
=
o
i

T T T
1% perturbation 5% perturbation 10% perturbation
lterations




