Evaluating Stochastic Floating-Point Superoptimization with STOKE

1. BACKGROUND INFORMATION

» Superoptimizers generally search through all
possible programs to find the fastest version of the
program supplied at the input [1]

* STOKE performs in contrast to most
superoptimizers a stochastic search

» Astochastic search uses randomness to search
through a subset of the entire search space

* This allows STOKE to find an optimum faster and
for larger programs, however this might not be the
true optimum [1]

* STOKE by default, does not formally verify the
results instead it relies on randomised tests

» Floating-point errors arise normally by the
order/type of operation performed because of
rounding errors in between operations [2]

* This also makes that
0.1+02-03#03-0.1-0.2

» STOKE contains an extension that optimizes
floating-point programs and allows for defining
the maximum precision error [3]

2. RESEARCH QUESTION

What classes of floating-point programs cause
STOKE to give well optimized results?
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The C programs are compiled/ optimized with
GCC version 4.9 and optimized with STOKE .
STOKE runs multiple times with different
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maximum allowed errors

Signum

Returns the sign
of the input
or 0 for0
The resulting
execution
speeds where
not statistically
significant
The resulting function was incorrect
for specific input values

«  For instance: signum(0.0)
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3. METHOD

Three small C programs

The C programs are compiled/optimized with

GCC version 12.1
The flag ffast-math is set this allows GCC to
violate some constraints of the standard for

floating point arithmetic
* The binary is also compiled without this flag

The function runtime is measured
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4. STOKE’S PERFORMANCE

Range Sum

Sums n

equally

spaced

values

between

start and

end

Can be

computed

without a loop

By realizing that the calculation is very

similar to GAUSS sum[4]

The results would then be computed

using:

n =(n+1) start = (start+1)
2 + 2

Stoke did not find this optimization
Instead it found one that malfunctioned
on specific input

Incorrect optimization made by STOKE when optimizing the
function

Execution time (s)

Find a Zero

Takes as input the coefficients for a
third order polynomial f(x) =
ax® + bx? + cx + d, the function
then tries to find a root(an x
s.t.f(x) = 0) The algorithm uses hill
climbing in order to find an x s.t.
f)~0
STOKE obtained a runtime reduction
of 1.08%

For allowed error of 0

ulp
Increasing allowed error resulted in
slower programs
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5. DISCUSION

* For the tests the best runtime reduction was 1.08%
compared to GCC version 12.1

» During all tests STOKE was unable to generate
results comparable to the original study

» Since the experiment only covers 3 algorithms are
the results Not generalizable to all programs

» They still can be used for answering the
research question

6. CONCLUSION

* STOKE struggled to find satisfactory
optimizations for all programs presented
» STOKE was never able to generate optimizations
that outmatched GCC with ffast-math enabled
» The STOKE test-case generator fails to generate
tests for floating-point number
It failed to prevent infinite loops

7. FUTURE WORK

» Future research could focus on experimenting with
different test-case generators

» To better understand the total capabilities of
STOKE, future studies should focus on different
program classes
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