Evaluating Stochastic Floating-Point Superoptimization with STOKE

1. BACKGROUND INFORMATION

» Superoptimizers generally search through all
possible programs to find the fastest version of the
program supplied at the input [1]

* STOKE performs in contrast to most
superoptimizers a stochastic search

» Astochastic search uses randomness to search
through a subset of the entire search space

* This allows STOKE to find an optimum faster and
for larger programs, however this might not be the
true optimum [1]

* STOKE by default, does not formally verify the
results instead it relies on randomised tests

» Floating-point errors arise normally by the
order/type of operation performed because of
rounding errors in between operations [2]

* This also makes that
0.1+02-03#03-0.1-0.2

» STOKE contains an extension that optimizes
floating-point programs and allows for defining
the maximum precision error [3]

2. RESEARCH QUESTION

What classes of floating-point programs cause
STOKE to give well optimized results?

%
TUDelft

The C programs are compiled/ optimized with
GCC version 4.9 and optimized with STOKE .
STOKE runs multiple times with different

Author: Jop Schaap — Supervisor: Dennis Sprokholt - Professor: Soham Chakraborty

maximum allowed errors

Signum

Returns the sign
of the input
or 0 for0
The resulting
execution
speeds where
not statistically
significant
The resulting function was incorrect
for specific input values

« For instance: signum(0.0)

— 1

a3m
437

4368

4366

4360

362

436

4358
h

4356

accva Gecviz GeCwith fastmat sTokE
Average runtime for 10000000 calls to the signum function after
being optimized

stepsize *

3. METHOD

Three small C programs

The C programs are compiled/optimized with

GCC version 12.1
The flag ffast-math is set this allows GCC to
violate some constraints of the standard for

floating point arithmetic
* The binary is also compiled without this flag

The function runtime is measured

4

4. STOKE’S PERFORMANCE

Range Sum

Sums n

equally

spaced

values

between

start and

end

Can be

computed

without a loop

By realizing that the calculation is very

similar to GAUSS sum[4]

The results would then be computed

using:

n =(n+1) start = (start+1)
2 + 2

Stoke did not find this optimization
Instead it found one that malfunctioned
on specific input

Incorrect optimization made by STOKE when optimizing the
function

Execution time (s)

Find a Zero

Takes as input the coefficients for a
third order polynomial f(x) =
ax® + bx? + cx + d, the function
then tries to find a root(an x
s.t.f(x) = 0) The algorithm uses hill
climbing in order to find an x s.t.
f)~0
STOKE obtained a runtime reduction
of 1.08%

For allowed error of 0

ulp
Increasing allowed error resulted in
slower programs
0.09

__________ - - — 0 _ _
il S S $ -0 —8--
ooss $ L
0087 SToke
0086 [- - === ccvamean
0085
oosa || =mm——— GCCvI2 without fast math
0083 || GCC with fast-math mean
0.082

008 m= == === === ————————
008
0 5 10 15 20 25 30 35
STOKE allowed (ulp)

Mean runtime of 100000 iterations the optimized Zero Finder
function

5. DISCUSION

* For the tests the best runtime reduction was 1.08%
compared to GCC version 12.1

» During all tests STOKE was unable to generate
results comparable to the original study

» Since the experiment only covers 3 algorithms are
the results Not generalizable to all programs

» They still can be used for answering the
research question

6. CONCLUSION

* STOKE struggled to find satisfactory
optimizations for all programs presented
» STOKE was never able to generate optimizations
that outmatched GCC with ffast-math enabled
» The STOKE test-case generator fails to generate
tests for floating-point number
It failed to prevent infinite loops

7. FUTURE WORK

» Future research could focus on experimenting with
different test-case generators

» To better understand the total capabilities of
STOKE, future studies should focus on different
program classes

[1] . Schkufza, R. Sharma, and A. Aiken, “Stochastic Superoptimization,” ACM SIGARCH Computer
Architecture News, vol. 41, pp. 305-316, 3 2013.

[21D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point Arithmetic,” ACM Comput. Surv., vol. 23, no. 1, pp. 5-48, Mar.
1991, doi: 10.1145/103162.103163.

3] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-point Programs With

Tunable Precision,” ACM SIGPLAN Notices, vol. 49, pp. 53-64, 6 2014.

[4]). DeMaio, “Counting Triangles to Sum Squares,” The College Mathematics Journal,vol. 43, pp. 297-303, Sept. 2012.Number: 4 Publisher: Taylor &
math.j.43.4.297.

Francis_epri i.org/10.

