
Find a Zero
• Takes as input the coefficients for a

third order polynomial f(x) =
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, the function

then tries to find a root(an x

s.t.𝑓 𝑥 ≈ 0) The algorithm uses hill

climbing in order to find an x s.t.

𝒇 𝒙 ≈ 𝟎
• STOKE obtained a runtime reduction

of 1.08%

• For allowed error of 0

ulp

• Increasing allowed error resulted in

slower programs

Range Sum
• Sums n

equally

spaced

values

between

start and

end

• Can be

computed

without a loop

By realizing that the calculation is very

similar to GAUSS sum[4]

• The results would then be computed

using:

• Stoke did not find this optimization

• Instead it found one that malfunctioned

on specific input

Signum
• Returns the sign

of the input

or 0 for 0

• The resulting

execution

speeds where

not statistically

significant

• The resulting function was incorrect

for specific input values

• For instance: signum(0.0)

→ 1

Evaluating Stochastic Floating-Point Superoptimization with STOKE
Author: Jop Schaap – Supervisor: Dennis Sprokholt - Professor: Soham Chakraborty

[1] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Superoptimization,” ACM SIGARCH Computer
Architecture News, vol. 41, pp. 305–316, 3 2013.
[2]D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point Arithmetic,” ACM Comput. Surv., vol. 23, no. 1, pp. 5–48, Mar.
1991, doi: 10.1145/103162.103163.
[3] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-point Programs With
Tunable Precision,” ACM SIGPLAN Notices, vol. 49, pp. 53–64, 6 2014.
[4] J. DeMaio, “Counting Triangles to Sum Squares,” The College Mathematics Journal,vol. 43, pp. 297–303, Sept. 2012.Number: 4 Publisher: Taylor &
Francis _eprint:https://doi.org/10.4169/college.math.j.43.4.297.

The C programs are compiled/ optimized with

GCC version 4.9 and optimized with STOKE

• STOKE runs multiple times with different

maximum allowed errors

The C programs are compiled/optimized with

GCC version 12.1

• The flag ffast-math is set this allows GCC to

violate some constraints of the standard for

floating point arithmetic

• The binary is also compiled without this flag

int signum(double x){

if(x > 1.0) {

return 1;

} else if (x == 0.0) {

return 0;

} else {

return -1;

}

}

double range_sum(double start,

double end, int n){

double total = 0.0;

double stepSize = (end - start) / n;

for(int i = 0; i < n; i++) {

doube current = start

+ ((double) i * stepSize);

total += current;

}

return total;

}

Three small C programs

4. STOKE’S PERFORMANCE

The function runtime is measured

3. METHOD

0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.09

0 5 10 15 20 25 30 35

Ex
ec

u
ti

o
n

 t
im

e
(s

)

STOKE allowed (ulp)

STOKE

GCC v4 mean

GCC v12 without ffast-math
mean

GCC with ffast-math mean

5. DISCUSION

• For the tests the best runtime reduction was 1.08%

compared to GCC version 12.1

• During all tests STOKE was unable to generate

results comparable to the original study

• Since the experiment only covers 3 algorithms are

the results Not generalizable to all programs

• They still can be used for answering the

research question

6. CONCLUSION

• STOKE struggled to find satisfactory

optimizations for all programs presented

• STOKE was never able to generate optimizations

that outmatched GCC with ffast-math enabled

• The STOKE test-case generator fails to generate

tests for floating-point number

• It failed to prevent infinite loops

7. FUTURE WORK

• Future research could focus on experimenting with

different test-case generators

• To better understand the total capabilities of

STOKE, future studies should focus on different

program classes

𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆 ∗
𝒏 ∗ 𝒏 + 𝟏

𝟐
+
𝒔𝒕𝒂𝒓𝒕 ∗ (𝒔𝒕𝒂𝒓𝒕 + 𝟏)

𝟐

addl $0x1, %eax

cvtsi2sdl %eax, %xmm2
mulsd %xmm1, %xmm2

addsd %xmm1, %xmm2

4.356

4.358

4.36

4.362

4.364

4.366

4.368

4.37

4.372

GCC v4 GCC v12 GCC with ffast-math STOKE

M
ea

n
 R

u
n

ti
m

e(
s)

Average runtime for 10000000 calls to the signum function after
being optimized

Incorrect optimization made by STOKE when optimizing the
function

Mean runtime of 100000 iterations the optimized Zero Finder
function

2. RESEARCH QUESTION

What classes of floating-point programs cause

STOKE to give well optimized results?

1. BACKGROUND INFORMATION

• Superoptimizers generally search through all

possible programs to find the fastest version of the

program supplied at the input [1]

• STOKE performs in contrast to most

superoptimizers a stochastic search

• A stochastic search uses randomness to search

through a subset of the entire search space

• This allows STOKE to find an optimum faster and

for larger programs, however this might not be the

true optimum [1]

• STOKE by default, does not formally verify the

results instead it relies on randomised tests

• Floating-point errors arise normally by the

order/type of operation performed because of

rounding errors in between operations [2]

• This also makes that

0.1 + 0.2 – 0.3 ≠ 0.3 – 0.1 – 0.2

• STOKE contains an extension that optimizes

floating-point programs and allows for defining

the maximum precision error [3]

