
DISCOVERING DIGITAL SIBLINGS
QUANTIFYING INTER-REPOSITORY SIMILARITY THROUGH
GITHUB DEPENDENCY STRUCTURES

Author
Mateusz Rębacz
m.rebacz@student.tudelft.nl
Responsible professor
Sebastian Proksch
Supervisor
Shujun Huang

MOTIVATION
Digital siblings - Repositories with similar goals or problem domains.

The Open Source software ecosystem is extensive, allowing
developers to collaborate, share and learn from the code of others.
Finding repositories similar to one’s own allows for better
collaboration, knowledge transfer, and code reuse.
With more than 100 million repositories on GitHub, finding similar
projects manually is a very difficult task.
Dependencies, such as libraries and frameworks used by software
projects, provide insight into the project’s topic/problem domain,
making an automated approach for finding digital siblings possible.

METHODOLOGY
Data Collection - We collect a list of repositories to analyse.
Dependency Extraction - Direct and transitive dependencies are extracted
automatically from each repository in our dataset.
Repository Vectorization - Each repository is transformed into a binary
vector representing the dependencies used by the project.
Performance Evaluation

Similarity Metrics - Euclidean Distance, XOR Sim., and AND Sim.
Clustering Techniques - Agglomerative, K-Means, and DBSCAN.
Composable Approach - Most effective similarity metric and
clustering technique combined for a hybrid, composable metric.

1. SIMILARITY METRICS EVALUATION 2. CLUSTERING TECHNIQUES EVALUATION

3. COMPOSABLE SIMILARITY METRIC

4. COMPOSABLE SIMILARITY METRIC EVALUATION

EUCLIDEAN DISTANCE AGGLOMERATIVEXOR SIMILARITY K-MEANSAND SIMILARITY DBSCAN

Calculates the Euclidean
distance between repository
dependency vectors.

Performs XOR between
repository dependency vectors
and uses the proportion of
matching dependencies as a
similarity metric.

Performs AND between
repository vectors and uses
the proportion of shared
dependencies as a similarity
metric.

Combines Similarity Metrics with Clustering Techniques.
A model M is trained by computing k clustering using the chosen training method.
In inference, a characteristic vector C is computed for each unseen vector by
calculating the distance of the vector to each cluster in pre-trained M. Similarity is
then calculated using Euclidean distance on characteristic vectors.

RESEARCH QUESTIONS
How can the dependency structures of GitHub repositories be leveraged to
find their digital siblings?

RQ2: What metrics, derived from analyzing dependency structures,
most accurately quantify the similarity between GitHub repositories?
RQ3: Which clustering methods are most effective in grouping GitHub
repositories into clusters mirroring similar problem domains?
RQ4: How can dependency structures as a similarity metric be
composed with the similarity metrics investigated by the other RP
group members?

CONCLUSIONS
RQ2: Similarity Metrics
The AND Similarity metric proved the most efficient. On average, it
assigns ~3x higher similarity values when repositories are digital siblings,
as opposed to dissimilar repositories.
RQ3: Clustering Techniques
The DBSCAN clustering proved the most efficient. ~79% of clusters
produced by DBSCAN aligned with the reference clusters.
RQ4: Composable Approach
Training the model using K-Means (k = 5) clustering proved the most
efficient. The metric assigns ~2x higher similarity values to digital
siblings.
Main question:
There are effective similarity metrics and clustering techniques which
can identify groups of digital siblings in a set of GitHub repositories.

DATA COLLECTION DEPENDENCY EXTRACTION REPOSITORY VECTORIZATION

Dataset: Selecting a list of GitHub repositories to analyse.
Currently: Minecraft modifications vs. server plugins.

Extraction: Extracting dependency tree
information for each repository in the data set.

Algorithm Design & Implementation: Creating a
similarity metric based on shared dep. structures.

0
1
1
0
1
...

org.spigotmc:spigot-api

com.github.seeseemel....

junit:junit

github.scarsz:configur...

com.vdurmont:emoji-...

