MODELLING CYCLIC STRUCTURES IN AGDA COINDUCTIVE FORMALIZATIONS OF LINEAR TEMPORAL LOGIC

AUTHOR

Calin-Marian Diacicov (c.m.diacicov@student.tudelft.nl)

SUPERVISORS -Jesper Cockx, Bohdan Liesnikov

1. BACKGROUND

LINEAR TEMPORAL LOGIC (LTL)

- Truth value of propositions varies in time.
- Pointwise lifting of classical operators and temporal modalities.
- A proposition is satisfied if it is currently true.
- A proposition is valid if it is true at any time point.
- Kripke structure: infinite sequence of valuations of propositional constants.

COINDUCTION

- *Corecursion*: Construct objects of a coinductive data type, by constructing the observations.
- Agda supports three types of coinduction:
 - a. *Musical* coinduction: compose delays with # and force them with \flat operators.
 - b. *Guarded* coinduction: use coinductive records and copattern matching to define coinductive types.
 - c. *Sized types*: tracks depth of recursion structurally by embedding types with a size.

2. RESEARCH QUESTION

How can linear temporal logic be formalized in Agda?

- How can coinduction be used to model LTL formulas?
- What limitations of Agda arise in the process of modeling and reasoning about temporal logic?

3. ENCODINGS DEEP EMBEDDING OF SEMANTICS

- Encode the syntax explicitly as an inductive type.
- Encode Kripke structures as streams of states.
- Encode the semantics using pattern matching. $\vdash : (\mathsf{KripkeStructure} \ n) \to \mathsf{LTLFormula} \ \{n\} \to \mathsf{Set}$ $K \vdash (Var x_1) = (head K) x_1 \equiv true$ $K \vdash (\text{Neg } x_1) = (\text{head } K) x_1 \equiv \text{false}$ $K \vdash (\bigcirc P) = (\mathsf{tail} \ K) \vdash P$ $K \vdash (\Box P) = K \models P$ $K \vdash (\diamond P) = \Sigma \mathbb{N}$ (eventually K P)

record \models (K : KripkeStructure n) (P : LTLFormula) : Set where coinductive field TrueNow : $K \vdash P$

TrueInFuture : (tail K) $\models P$

Listing 1: Definition of satisfaction for the temporal operators, propositional constants, and negation.

4. EXPERIMENTS

- 1. Soundness: Derived an axiomatization of LTL to prove correctness of the formalization.
- 2. Absorption theorems: Proved identities exploring the interaction between ◊ and □ temporal modalities.
- 3. Towers of Hanoi: Encoded T Hanoi as a state system and properties of the system.

5. AGDA LIMITATIONS —

- **Documentation:** Documentation for certain topics is missing or incomplete.
- Error messages: Oftentimes error messages are confusing and do not point to the actual problem.
- Termination checking: The termination checker fails to identify structurally decreasing parameters.

wers of	Encoding	Soundness	Absorption Theorems	Towers of Hanoi
prove	Shallow embedding	1	✓	1
	Deep embedding	1	✓	X

Table 1: Summary of the results of the experiments.

6. FUTURE WORK —

- Explore **extensions** of the LTL we considered.
- Investigate formalizations of LTL using other types of coinduction.