
Motivating Version Range Adoption in Maven Through Quantified Trust
Gijs Hoedemaker

Supervisor: Cathrine Paulsen, Responsible Researcher: Sebastian Proksch

1. Introduction

Developers are more and more reliant on external libraries to use as building
blocks for their projects.
Dependency managers such as npm for Node.js, Cargo for Rust, or Maven for
Java facilitate developers with automated dependency version resolution.
Improper dependency management practices result in the continued use of
vulnerable dependency versions despite fixes being promptly available.
These issues arise in part because developers are unaware of these
vulnerabilities, as well as security not being a high priority because of the
introduced effort caused by backward incompatible changes.
The Semantic Versioning policy aims to inform which kinds of updates were
performed on a dependency.

MAJOR.MINOR.PATCH
Version ranges, in combination with SemVer, can be used to automatically adopt
dependency updates.
Failure in complying with the semver policy results in developers being hesitant
to use version ranges in order to avoid updates with backward incompatible
changes.
A study by Zhang et. al found that out of 82 million dependency relationships,
only 1.02% used semantic version ranges, while 98.94% of these ranges helped
resolve patched versions of once-vulnerable dependencies. These numbers
show that version ranges are heavily underavlued.

2. Research Gap
Version ranges are especially underutilized in Maven compared to other
dependency managers.
The notion of trust has been shown to be an important factor for version range
adoption, but it is unclear what defines the trustworthiness of a dependency.
OpenSSF’s Scorecard provides quantitative metrics on a dependency’s security
hygiene and release frequency also contributes to dependency stability. These
and other factors can be combined to provide a concrete notion of trust.

3. Research Questions
 This project aims to answer the following research questions:

What is the impact of using fixed versions as opposed to version ranges?
Motivation: by investigating a large set of open-source projects for the amount
of declared dependency versions which are outdated but can be safely updated
without compatibility issues, we can provide a representative picture of the
underutilisation of version ranges in Maven projects and motivate developers, as
well as provide further motivation for our second research question.
Which dependencies can be trusted to adhere to semantic versioning?
Motivation: other than popularity and community opinion, dependencies have
few indicators that suggest whether or not they comply with SemVer policies. By
compiling a Trust Score metric based on several key heuristics of a dependency,
developers may be persuaded to use version ranges for dependencies with a
high score.

4. Methodology 6. Discussion
A selection of GitHub projects was made based on a careful selection of
parameters:
1.No toy projects. Projects with fewer than 100 commits and 1000 LOC were

filtered out to exclude toy projects with few or no dependencies.
2.Actively maintained. Only projects that saw any form of activity after January

1, 2025 were selected to increase the likelihood of a dependency
management policy.

3.Mature. Dependency management is not a priority in the early stages of a
project, so selected projects were required to be over a year old.

For each project and its modules, each dependency was extracted along with
the declared version.
For each unique dependency, a list of all releases was queried from the Maven
repository.
To answer RQ1, each extracted declaration was compared using an API
comparison tool, japicmp, to see how often it could be updated without
breaking changes being introduced, and whether it could be updated to the
latest release with the same major version number.
To answer RQ2, we developed a command-line tool, TeSTer, which analyses a
dependency to generate a Trust Score based on the following metrics:
1.OpenSSF Scorecard Score. This is an assessment of a library repository based

on a number of heuristics to indicate the security hygiene of a project. Some
important factors include code reviews, the existence of a security policy, and
the use of dependency update tools.

2.Release frequency. A low MTTU indicates active maintenance, suggesting that
potential vulnerabilities get fixed promptly after discovery.

3.Automated analysis of semantic compatibility. This is an important factor in
motivating developers to use version ranges, as low semantic compatibility
introduces a large maintenance overhead. Providing insight on the amount of
backward-compatible minor and patch versionscan provide a lot of
information on the trustworthiness of a dependency.

5. Results
Impact of fixed versions (RQ1)

Analysis for RQ1 shows that 52.2% of declared
dependencies are outdated and are safely able to
be updated at least once. Many dependencies
even have multiple newer versions available,
causing developers to miss out on multiple bug-
fix or security updates.
Further analysis shows that 85.47% of patch
versions and 40,68% of minor versions can even
be updated to their latest release.

Trust Score (RQ2)
Results of TeSTer’s analysis of the most popular
Maven dependencies is shown in the table. It can
be seen that all factors are considered and low
metrics result in low Trust Scores.

Results for RQ1 indicate that 62% of minor versions can be safely updated, and
48% of patch versions can be safely updated. This is lower than expected,
considering previous work showing that a third of minor updates and a quarter
of patch updates introduce breaking changes.
Only around a quarter of outdated dependencies can be safely updated to the
latest version without conflicts. This is lower than expected, but should still
provide some motivation for developers to put more thought into their
declaration strategies.
TeSTer is currently presented as a proof of concept and more research could be
done into additional factors that determine the trustworthiness of a
dependency, resulting in a more grounded Trust Score.
TeSTer can be made more accessible by repurposing it as a Maven plugin,
GitHUB CI tool, or an IDE plugin providing real-time suggestions to convert
fixed versions into version ranges.

7. Conclusions
Dependency managers can greatly aid developers with dependency declaration
as projects grow larger in size.
Version ranges help reduce maintenance overhead for developers by
automatically adopting new releases.
Releases breaking SemVer conventions dissuade developers from employing
version ranges, undermining their value.
To motivate developers to consider making the transition to using version
ranges, we performed quantitative empirical analysis on a large set of open-
source projects.
We showed that more than half of outdated dependencies can be safely
updated to a newer compatible version, and a quarter can be safely updated to
the latest available release.
We developed TeSTer as a conceptual command-line tool which analysis a
dependency for key security and compatibility heuristics, generating a Trust
Score which allows developers to make conscious, risk-aware decisions when
incorporating a dependency into their project.

