

Dependency Families in the Maven Ecosystem EEMCS, Delft University of Technology, The NetherlandsAuthor: Wojciech Graj <w.graj@student.tudelft.nl>Supervisors: Sebastian Proksch, Cathrine Paulsenhttps://resolver.tudelft.nl/uuid:67d109a8-e7b6-45eb-995c-f2cf8851ac691. Introduction
– Apache Maven is a build automation tool used for Java
– What is a “dependency family”?

– Dependencies from the same organization, designed to be used togetherFor example:
– com.fasterxml.jackson>{jackson-bom, jackson-datatype-guava, …}
– org.apache.lucene>{lucene-core, lucene-queryparser, lucene-queries, ...}

– Why is this worth researching?
– Determine best practices for maintainers based on existing conventions
– Identify patterns downstream users can expect
– Justify development of new functionality in Maven to make them easier to use or maintainResearch questions:1) How can we detect which dependencies belong to the same dependency family?2) What are some common patterns among dependency families?2 a) How are dependency family sizes distributed, and how much of the Maven ecosystem to they account for?2 b) How is the frequency of use of individual dependencies in any family distributed?2 c) How often are versions out-of-sync and how frequently are releases without code changes published to keep their versions in sync?

2. Dataset
– Dataset: Central Maven Index

– 688 201 Artifacts
– 15 985 044 POM files
– 16 297 705 Releases
– 151 010 512 Dependency usages3. Dependency Family Detection

– Construct graph of dependencies
– Edge weights: linear combination of pairwise co-use of dependencies, and existence of parent-child relation in POM

– Higher α → More influence from parent-child relation
– Evaluation criteria: Jaccard index comparing similarity to manually-identified families (J∈[0,1], higher is better)Algorithm Res α JConnected Components - 1.0 0.236Leiden 0.06 0.0 0.432Louvain 0.003 0.96 0.575

An Analysis of Software Dependency Graphs

– Difficult to get better results without more data
– Very difficult to calculate similarities of package names

– Detected families are satisfactory4. Family-Based Insights4.1. Cardinalities and Pervasiveness
– 76.0% of all artifacts belong to a dependency family
– Most families very small

– 0.570% have a cardinality > 100

4.2. Usage Rates
– Most families have a few main dependencies and many peripheral ones
– Only small subset of families is typically used

4.3. Version Homogeneity and Empty Releases
– 55.3% of all dependency families consistently have same version number
– Releases with no code changes are used to keep versions in sync
– Many releases (50.0%) have no code changes but produce different source JAR because reproducible builds are not default

5. Future Work & Recommendations
– Investigate impact of storing binary diffs between releases, as many are very similar
– Enable reproducible builds by default
– Examine trends in dependency usage in downstream non-dependency software
– Examine other non-Java dependency management systems

mailto:w.graj@student.tudelft.nl

	Slide 1

