Author: Radu-Cosmin Dumitru (r.c.dumitru@student.tudelft.nl)

Introduction

Deterministic Finite Automata (DFAs) are interpretable models used in classification tasks involving sequential data. Learning DFAs observed data offers practical benefits, with applications sucl software synthesis [1] and protocol analysis [2].

DFA Inference

Given some training data, construct a DFA consistent with that data

Figure 1: DFA learned from a labeled sample set

Ensemble techniques

Use multiple different models to capture all features in the training More robust and generalizable aggregated output

The ensemble is expected to outperform each of its constituent mod

Background

Evidence Driven State Merging (EDSM) – competition-winning DFA learning algorithm [3]

Initial Hypothesis

The Prefix Tree Acceptor exactly represents the training set accepting all positive traces and rejecting all negative ones

The Augmented Prefix Tree Acceptor (APTA) introduces intermed states that enable merging, thus generalizing beyond the original da

Figure 2: Augmented Prefix Tree Acceptor for $S_+ = \{a, ba, baa\}, S_- = \{\epsilon, aba, baa\}$

State Merging

- . Explore states of the DFA in a BFS-like approach
- 2. Compute the scores of candidate merges based on a heuristic
- 3. Pick a pair of states with the highest score and merge them
- 4. Repeat until all states are visited

EDSM Heuristic

A candidate merge is scored based on *evidence* s = P + NP = # positive-positive merges N = # negative-negative me performed during the candidate merge

Research Question

How can the EDSM algorithm be adapted to fit within an ensemb learning framework in order to enhance its effectiveness?

Adapting the EDSM Algorithm for Ensemble Learning

A Machine Learning Approach to DFA Inference

	Methodology
often s from	Ensemble Types
ch as	Randomized Models
	Introduce noise in the evidence score using a multiplicative where r is a hyperparameter of the ensemble
1	$s_{new} = (1 - R) \cdot s$ <u>Boosting</u>
_	Assign a weight to each state in the initial APTA
	Iteratively learn models based on the weighted evidence so $s_{new} = \frac{w_a + w_b}{2} \cdot s$
data	Validation traces misclassified by new models are simulate of the final state in each simulated path is increased
odels	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	4: $V_i \leftarrow \text{Validation traces misclassified by } M_i$ 5: $D \leftarrow \text{UpdateWeights}(D, V_i)$ 6: Add M_i to ε 7: end for 8: return ε
_	Algorithm 1: Boosting process
t by	Ensemble Prediction
diate	An ensemble ε of n models M_1, M_2, \dots, M_n aggregates the through weighted majority voting
ata	$prediction(t) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} w_i \cdot M_i(t) \\ 0 & \text{otherwise} \end{cases}$
	Diversity Measure
	Average Disagreement Rate
bab}	The disagreement rate $\Delta_{A,B}$ between two models M_A and M_A the dataset for which their predictions differ
	$\Delta_{A,B} = \frac{1}{N} \sum_{i=1}^{N} 1_{M_A(t_i) \neq M_B(t_i)}$
	The average of $\Delta_{A,B}$ over all ordered pairs of models M_A a of the ensemble
	Performance Comparison
	The ensembles were evaluated against a single DFA le EDSM heuristic
	Conclusions
erges	All ensembles achieved significantly better performance on to the baseline EDSM model
	Greedy EDSM is more effective on dense data, but the erperformance
ble	Although boosting consistently produced the most divers was similar to the randomized models
_	

Supervisor: Simon Dieck **Responsible Professor: Sicco Verwer**

Results --- Sinale DFA Randomized, r = 0.1Randomized. r = 0.4Randomized, r = 0.7ve random factor $R \sim \mathcal{U}(0, r)$, core ed on the APTA, and the weight 0.40 0.45 0.55 Density Figure 3: F_1 -score of all ensembles and a single DFA, in increasing set, n: number of models density of the datasets heir individual predictions $M_i(t)$ Randomized, r = 0.1Randomized, r = 0.4Randomized, r = 0.7> 0Boosted 0.30 0.35 0.40 0.45 0.50 0.55 Densitv Figure 4: Average Disagreement Rate within each ensemble Method Random, r = 0.1 - 0.1Random, r = 0.7 - 0.7 M_B is the proportion of traces in Boosted Method Single Random, r = 0.1 0. Random, r = 0.4 0. Random, r = 0.7 - 0.7Boosted and M_B is the diversity measure Method Single Random, r = 0.1 0. Random, r = 0.4 0. Random, r = 0.7 0. earned using the greedy Table 1: Statistical analysis of the F_1 -score on the entire dataset and on its two density-based halves References the sparse datasets compared [1] M.J.H. Heule and S. Verwer. Software model synthesis using satisfiability solvers. *Empirical Software Engineering*, 18(5):825–856, 2013. nsembles maintain comparable [2] S. Wang, F. Sun, H. Zhang, D. Zhan, S. Li, and J. Wang. EDSM-based binary protocol state machine reversing. Computers, Materials and Continua, 69(3):3711–3725, 2021. [3] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo one DFA se ensembles, its performance learning competition and a new evidence-driven state merging algorithm. In International Colloquium on Grammatical Inference, pages 1–12. Springer Berlin Heidelberg, 1998.

ſean	Standard Deviation	Paired t-test vs Single (t, p)
.5825	0.1351	
.5996	0.1399	(1.10, 0.2730)
.5952	0.1443	(0.81, 0.4203)
.5966	0.1469	(0.91, 0.3674)
.6032	0.1421	(1.66, 0.1009)
	(a) All datasets	
ſean	Standard Deviation	Paired t-test vs Single (t, p)
.5318	0.0967	
.6276	0.0807	(6.54, 0.0001)
.6232	0.0926	(5.68, 0.0001)
.6226	0.0928	(5.89, 0.0001)
.6214	0.0956	(5.25, 0.0001)
	(b) Lower half of dataset	ts
ſean	Standard Deviation	Paired t-test vs Single (t, p)

6331	0.1484	
5717	0.1762	(-2.71, 0.0092)
5671	0.1774	(-3.01, 0.0041)
5706	0.1821	(-2.78, 0.0077)
5849	0.1750	(-4.00, 0.0002)
	(c) Upper half of datasets	