Property-Based Testing in the Wild!

CSE3000 Research Project

Background & Motivation Research Questions

Methodology Limitations

Data Collection:

» GitHub API to identify Haskell repos using
QuickCheck
Manual filtering for active and meaningful
projects (actively maintained, high stars,
etc.)

Research based on open-source GitHub
repositories. This might miss how
QuickCheck is used in private or enterprise
projects.

Static extractor. Regex scan misses
Template-Haskell-registered tests; a few
properties could be uncounted.

Data Analysis:

» Sampling. Stratified hand-random draw:
= 217 for manual coding.
Classity property types based on existing
literature[2]
Check Logical constructs (forAll, ==>,
&&./|.)

» Detect generator and shrinking usage

* \/isualisations

The manual classification of properties and
generators could introduce subjectivity.

Manual coding may contain small counting
slips (2 %).

We look at the latest release of each repo,
not how property suites evolve over time.

References

[1] K. Claessen and J. Hughes, “QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs,” Proc. ICFP
2000, pp. 268-279.

[2]

An Analysis of QuickCheck usages in Open-Source Haskell Projects

Ye Zhao (yv.zhao-33@student.tudelft.nl)
Supervisors: Andreea Costea, Sara Juhosova

‘ Delft University of Technology

Findings

Conclusion

Repository Name Total PBT Other tests PBT Percentage Three high-leverage idioms
C
Eﬂﬁi;ﬁ “3? 422 ?130_'2{; Invariant, Test-Oracle, and Round-
hashable 21 15 58.3 % Trip cover = 87 % of all sampled
lens 25 55 31.3% properhes
megaparsec 386 573 40.3 %
pandoc-types 23 114 17.2 %
text 492 262 65.3 % Generator effort pays off.
vector 171 2637 6.1 %

Just 12 module-level generators
power over hundred tests (56 %);

4 defined instance shrink appear in
25 % sampled test.

l|dempotence
| 4%
FoundTrip
14 3%

Division of labor.

QuickCheck rules pure, deterministic
logic; example / golden tests lock
down I/0, UX, and performance
details.

Auto-derive recursive generators.
Type-driven synthesis could replace
the dozen hand-written generators
that already power half the tests.

HardToFrovekEasy

11.1%

Invariant
44 7%

TestCOracle

o Megation (not) B Disjunction (., |} Conjunction {L&&., and)
B Implication (=== iffthenielse) B8 forAll (explicit)

25

20

Shrink user studies. Measure
debugging time saved by custom
shrinkers and defaults.

Amount of PBT

Cross-ecosystem replication.

Apply the same codebook to more
language and framework to test if the
“high-leverage trio” is language-
agnostic.

Fepository Mame

https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/

	Slide 1

