
What is Property-based testing (PBT)?
A powerful approach to software testing 
that verifies the correctness of programs by 
checking general properties over large sets 
of automatically generated inputs. 

Why QuickCheck?
QuickCheck, introduced in 2000 by Claessen 
and Hughes[1], is one of the first and most 
influential PBT tools. Heavily used in the 
Haskell community, it also inspired many 
testing frameworks in other languages, 
such as Hypothesis in Python. 

Background & Motivation

Property-Based Testing in the Wild!
An Analysis of QuickCheck usages in Open-Source Haskell Projects

Ye Zhao (y.zhao-33@student.tudelft.nl)

Supervisors: Andreea Costea, Sára Juhošová 

Delft University of Technology

Main question:
How is Property-Based Testing with QuickCheck 
applied in real-world Haskell open-source projects?

 • RQ 1. What kinds of properties are typically 
tested using QuickCheck?
 • RQ 2. Which types of quantifiers and logical 
connectives are used in these properties?
 • RQ 3. How does property-based testing 
complement other testing strategies such as unit 
tests?
• RQ 4.How and when are generators 
implemented?
 • RQ 5. In which scenarios do developers explicitly 
define shrinking strategies?

Research Questions

Data Collection:
• GitHub API to identify Haskell repos using 

QuickCheck 
• Manual filtering for active and meaningful 

projects (actively maintained, high stars, 
etc.)

Data Analysis:
• Sampling. Stratified hand-random draw: 
⇒ 217 for manual coding.

• Classify property types based on existing 
literature[2]

• Check Logical constructs (forAll, ==>, 
.&&./.||.)

• Detect generator and shrinking usage
• Visualisations

Methodology

[1] K. Claessen and J. Hughes, “QuickCheck: A Lightweight 
Tool for Random Testing of Haskell Programs,” Proc. ICFP 
2000, pp. 268–279.
[2] https://fsharpforfunandprofit.com/posts/property-
based-testing-2/

Three high-leverage idioms 
dominate. 
Invariant, Test-Oracle, and Round-
Trip cover ≈ 87 % of all sampled 
properties.

Generator effort pays off.
Just 12 module-level generators 
power over hundred tests (56 %); 
4 defined instance shrink appear in 
25 % sampled test.

Division of labor.
QuickCheck rules pure, deterministic 
logic; example / golden tests lock 
down I/O, UX, and performance 
details.

Conclusion

CSE3000 Research Project

Limitations

• Research based on open-source GitHub 
repositories. This might miss how 
QuickCheck is used in private or enterprise 
projects.

• Static extractor. Regex scan misses 
Template-Haskell-registered tests; a few 
properties could be uncounted.

• The manual classification of properties and 
generators could introduce subjectivity. 

• Manual coding may contain small counting 
slips (±2 %).

• We look at the latest release of each repo, 
not how property suites evolve over time.References

Findings

Future

Auto-derive recursive generators. 
Type-driven synthesis could replace 
the dozen hand-written generators 
that already power half the tests.

Shrink user studies. Measure 
debugging time saved by custom 
shrinkers and defaults.

Cross-ecosystem replication. 
Apply the same codebook to more 
language and framework to test if the 
“high-leverage trio” is language-
agnostic.

https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/

	Slide 1

