
Improving Single-Cell Transcriptomic Aging Clocks: 
Enhancing Accuracy and Biological Interpretability

Transcriptomic aging aims to estimate biological age based
on gene expression profiles [2].
Single-cell RNA sequencing (scRNA-seq) allows aging
signatures to be studied at a cellular resolution.
The study by Zakar-Polyák et al. [1] showed that ElasticNet
can model immune aging signatures.
A limitation of their study is the lack of feature importance
or interpretability analysis, leaving uncertainty about
which specific genes drive the age predictions.

   2. Research question

   1. Introduction

Can we improve on current models that predict
biological age using single-cell gene expression data,
and can we determine which specific genes are most

important for making accurate predictions?

  3. Methods
       Data preprocessing and model training

Used AIDA dataset for training (~1m cells from 508 healthy
human donors aged 19–75).
Filtered genes: top 5000 most variable (variance-based
per cell type) for linear models and top 3000 for nonlinear.
Total-count normalization (10,000 counts/cell) and applied
log-transformation and Z-score standardization per gene.
Trained separate models per cell type: ElasticNet for linear
(with the purpose of improving paper results) and
LightGBM for nonlinear (to capture complex interactions in
high-dimensional data [3]), both tuned using nested CV.

       Model Application
Applied the trained models to 4 external datasets.
Imputed missing gene values using reference averages.
Predicted age for each cell using all 5 models.
Averaged predictions per cell (for the external datasets).

       Evaluation
Metrics: MAE, Pearson’s r, Spearman’s ρ, R².
Performed feature importance via SHAP analysis.
Applied functional enrichment analysis of top SHAP genes.

   4. Results    5. Conclusions
Enhanced linear models outperformed
replication baselines, with MAE reductions
of 1–2 years, and up to 5–6 years in some
cell types (CD14-positive monocyte for the
eQTL dataset), highlighting the impact of
improved preprocessing and tuning.
SHAP analysis revealed robust global and
cell-type-specific aging genes, with key
genes like JUND, FOS, KLF6, GNAS
consistently important across models.
Enrichment analysis confirmed links
between top genes and immune system
processes, validating the biological
relevance of learned features.

       Future work
Perform deeper hyperparameter tuning
using log-scaled continuous search spaces.
Focus on developing hybrid and domain-
adaptive models to improve generalization.
Explore datasets that are more similar in
structure and composition to training data.
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Figure 1: MAE comparison between replication models (red) and enhanced linear models (blue).

Figure 2: SHAP importance heatmap for the top 30 genes (ranked by global mean SHAP value
across all cell types).

Figure 1 showcases that enhanced models consistently outperformed
replication models with median MAE reductions ranging between 0.5 and
1 year on the AIDA training dataset, and even higher improvements for
the external datasets, with average MAE reductions between 2-3 years.
Figure 2 reveals that some genes consistently show high importance
across many immune cell types, while others are more cell-type-specific,
with the first column highlighting a global summary of feature relevance.
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Gene symbols in bold represent common gene names transformed for readability
from Ensembl gene IDs (the ones displayed on the left of Figure 2).
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