# **EVALUATING ROBUSTNESS OF DEEP REINFORCEMENT** LEARNING FOR AUTONOMOUS DRIVING

# By Ege Bayram E.Bayram-1@student.tudelft.nl Supervisors: Matthijs Spaan, Moritz Zanger

#### **1. Research Question**

How do domain randomizations influence training and the robustness of final policies under various testing conditions?

#### 2. Background Information

#### Deep Q-Network (DQN)

- Q-learning
- ε-greedy policy
- Experience replay

#### Domain Randomization (DR)

- Train in a variety of environments to generalize to the target domain
- Visual and dynamic DR



Figure 1: Conceptual illustration of domain randomization [5]



Figure 2: Examples of visual DR

### 4.1 Results for Visual DR

#### Training

Testing

Overall DR is underperforming

High variance during training

**Evaluation Score per Episode** 

Episode Numbe

DQN BASE DQN DR



DR is underperforming during testing as well

Less variance difference compared to training data

|       | BASE  | DR |       |
|-------|-------|----|-------|
| MEAN  | 838.8 |    | 786.3 |
| STDEV | 120.6 |    | 133.9 |

## 4.2 Results for Dynamic DR

### Training





Lower standard deviation, higher

## 6. Conclusions

Visual DR in CarRacing-v2 shows a decrease in training performance and does not show a notable difference in robustness

Dynamic DR in CARLA shows worse training performance but an increase in robustness at the expense of rewards.





#### Testing

Lower mean in all cases, special case in Town04



## 3. Methodology

DQN as base algorithm

#### Visual DR

- 1 million steps on OpenAI's CarRacing-v2
- Randomize background and track color at every episode
- 10 randomly generated tracks for robustness testing

#### **Dynamic DR**

- 500k steps on CARLA
- Randomize steering angle, acceleration value, and out-of-lane threshold every episode
- 10 episodes on 3 towns with random starting positions for robustness testing

#### 5. Limitations

Hardware limitations delayed the setup for CARLA

Time limitations caused CARLA DR training to end before converging

### **Related Literature**

[1] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active domain randomization. 2019.

[2] Xue Bin Peng et al. "Sim-to-Real Transfer of Robotic Control with Dynamics Randomization". In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, May 2018. doi:

10.1109/icra.2018.8460528. url: https://doi.org/10.1109%2Ficra.2018. 8460528.

[3] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image, 2017

[4] Josh Tobin et al. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, 2017, arXiv: 1703.06907 [cs.RO].

[5] Lilian Weng. "Domain Randomization for Sim2Real Transfer". In: lilianweng.github.io (2019). url: https://lilianweng.github.io/posts/2019-05-05-domain-randomization/