

Influence of Gradually Abstracting Adaptive Explanations on Human Supervision and Trust in Robots

1. Background

- Human Agent Teamwork (HAT): Al developments enable agents to collaborate with humans, sharing objectives and responsibilities.
- **Explainable AI (XAI):** refers to methods make AI decisions understandable to humans, enhancing trust and collaboration.
- Adaptive Explanations: tailor information to the user's knowledge level, improving communication efficiency and user satisfaction in human-agent interactions.

2. Research Question

RQ: How do adaptive explanations that become more abstract over time influence human supervision over and trust in the robot?

3. Scenario & Task

- Environment: A dynamic task allocation system in MATRX simulated a 2D firefighting environment with 11 victims needing rescue (see Figure 1).
- **Task**: The robot made decisions based on predicted moral sensitivity, deferring to the human supervisor if the threshold was exceeded.
- **Agent**: Brutus, a firefighting agent, performed search and rescue operations in collaboration with a human supervisor.

4. Measures

- a) Dependent Variables
- Capacity Trust
- Moral Trust
- Disagreement Rate
- b) Control Variables
- Demographic Variables
- Gaming Experience
- Risk Propensity
- Trust Propensity
- Utilitarianism

5. Adaptive Explanations Design

- Motivation: Experienced participants need fewer detailed explanations, reducing information load.
- Initial phases require granular explanations, but more abstract ones become adequate as familiarity increases (see Example).
- The adaptive strategy involves evolving plots and explanations through stages, maintaining essential information flow (See Figure 2)

Figure 1: Early Stage, plot with a full Figure 2: Intermediate Stage, sor what detailed

Figure 3: Abstract Stage, less detail

Figure 2. Screenshots of the plots

Example:

Number of Occurrence (2) -> Active for {deployment_time} minutes. Continue or switch to defense? Decision needed due to sensitivity ({sensitivity}). Take your time or assign it to me. Feature contributions: (plot)

Number of Occurrence (6) -> Continue or switch to offense? Decision needed due to sensitivity({sensitivity}). Contributions: (plot)

Figure 1. Screenshot of the environment

li safe 🎒 fast 🚱 ? 🛉 🔥

Author: Elena Ibanez (e.ibanez@student.tudelft.nl) Supervisor: Ruben Verhagen Responsible Professor: Myrthe Tielman

6. User Study

- Involved 40 participants, with 20 assigned to a baseline/non-adaptive scenario and 20 to an adaptive scenario.
- Participants provided informed consent and completed the survey.
- All survey responses were collected using Qualtrics.

8. Discussion & Conclusion

- No significant differences found between baseline/non-adaptive and adaptive explanations.
- Indication of high trust and satisfaction across both conditions suggest participants perceived the robot as trustworthy and were satisfied with the explanations.

7. Results

 Statistical tests on the four dependent variables (capacity trust, moral trust, XAI satisfaction, and disagreement rate) show no significant differences between baseline/non-adaptive and adaptive explanations (see Figure 3).

• This indicates that the two conditions do not notably impact these measures.

& Future research should explore more diverse participant groups, alternative adaptive explanations, and long-term effects to better understand their potential benefits.

Figure 7: XAI Satisfactio

Figure 8: Disagreement Rat

Figure 3: Screenshots of the Boxplots.