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1. Motivation

e Autonomous driving systems (ADS) can bring safety & efficiency

e Until full automation, control mediation between person & ADS needed
e Vehicle leaves operational design domain (ODD) or ADS malfunctions
e Can’t crash cars just to find optimal control mediation policies

Policy (WandB i} Accident HR leflel A4R le.vel Unsafe . Unpecessar.y Complete episode
ratio 2 ratio 2 ratio | action ratio | actions ratio used ratio
Baseline (333-eval) | 0.0128 0 0.0082 0.04632 0 0.1762
SB3 DQN (167-train) | 0.1788 | 0.03868 | 0.01535 0.1737 0.0851 0.064
SB1 DQN (184-train) | 0.026 | 0.005363 | 0.02005 0.09648 0.04752 0.0008

Figure 2: evaluation
results

KB. Method

How can an optimal driving entity
switching strategy be found under
automation degradation?

Baseline decision tree policy

Actions:
DN: do nothing
ES: emergency stop

Safety and comfort evaluation
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e Markov Decision Process (MDP) formulation

e Simulate state space, autonomous system failures & leaving/entering ODD
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Deep reinforcement learning approach with Deep Q-Network (DQN)

J : Needed & approved | Needed & approved | Correct ES
Policy (WendB'id) ELO action ratio EL4 action ratio ratio
Baseline (333-eval) 1 1 1

SB3 DQN (167-train) 0.1982 0 0.8067
SB1 DQN (184-train) 0.5798 0.1222 0.5688
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Baseline outperforms DQN policy, explainability is easy
No simple reward suitable because of multi-objective optimization
Learning complex, multi-step decision chains is problematic

Baseline limitations: noisy input, need to map out all possible
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