

goal

reached

yes

15

accident

occurs

yes

-100

Author: Csanád Bakos, c.bakos@student.tudelft.nl | Supervisor: Yang Li | Responsible Professor: Matthijs Spaan | April-July 2021 | CSE3000 Research Project

1. Motivation

- Autonomous driving systems (ADS) can bring safety & efficiency
- Until full automation, control mediation between person & ADS needed
- Vehicle leaves operational design domain (ODD) or ADS malfunctions
- Can't crash cars just to find optimal control mediation policies

Policy (WandB id)	Accident	HR level	A4R level	Unsafe	Unnecessary Com		olete episode
	ratio	2 ratio	2 ratio	action ratio	actions ratio	used ratio	
Baseline (333-eval)	0.0128	0	0.0082	0.04632	0	0.1762	
SB3 DQN (167-train)	0.1788	0.03868	0.01535	0.1737	0.0851	0.064	
SB1 DQN (184-train)	0.026	0.005363	0.02005	0.09648	0.04752	0.0008	
Figure 2: evaluation results	Policy (WandB id)		Needed & approved EL0 action ratio		Needed & approved EL4 action ratio		Correct ES ratio
	Baseline (333-eval)		1		1		1
	SB3 DQN (167-train)		0.1982		0		0.8067
	SB1 DQN (184-train)		0.	.5798	0.1222		0.5688

Figure 3: basic

low

rewards

2. Question

How can an optimal driving entity switching strategy be found under automation degradation?

Actions: DN: do nothing ES: emergency stop SL0/4: suggest shift to L0/4 EL0/4: enforce shift to L0/4

3. Method

- Markov Decision Process (MDP) formulation
- Simulate state space, autonomous system failures & leaving/entering ODD
- Baseline decision tree policy
- Deep reinforcement learning approach with Deep Q-Network (DQN)
- Safety and comfort evaluation

4. Results & Conclusions

- Baseline outperforms DQN policy, explainability is easy
- No simple reward suitable because of multi-objective optimization

current

risk level

moderate

high

- Learning complex, multi-step decision chains is problematic
- Dilemma about final say in decisions
- Baseline limitations: noisy input, need to map out all possible scenarios