Explaining Cricket Shot Techniques with Explainable AI

TUDelft

How can Explainable AI methods simplify the understanding of pose-based classification results for cricket shots?

1.INTRODUCTION

In this paper I explore the usability XAI techniques in cricket shot analysis.

BACKGROUND

With the rapidly evolving AI technologies, more and more are becoming incorporated into sports, be it in the form of AI-assisted VAR, game predictions, or technique checking. Al is quickly becoming a musthave tool for athletes looking to improve in their respective sports, and one of those sports is cricket. There is no research combining XAI with pose estimation based cricket shot classification.

OBJECTIVES

- Identification of XAI techniques that effectively explain pose-based classification results.
- Visualizations and explanations that highlight keypoint (e.g. shoulder) contributions and interdependencies in cricket poses.

2.METHODOLOGY

Research and select potential suitable XAI models. Construct classification models and implement XAI on top Evaluate and conclude which XAI model is best suited CNN with Grad-CAM + Construc Extract Video Desizing CNN MediaPipe Drocard Random Forest

Figure 1: Implementation Pipeline

Model	Explanation	Compatibility	
SHAP	Local + Global	Model-agnostic	
Grouped SHAP	Local + Global	Model-agnostic	
LIME	Local	Model-agnostic	
Permutation	Global	Model-agnostic	
Feature	Global	Model-specific (RF)	
ALE Plots	Global	Model-agnostic	
Grad-CAM	Local	Model-specific	

3.RESULTS

DATASET & POSE-ESTIMATION

722 videos of 5 different cricket shot techniques processed per frame, 17 body keypoints x,y,z extracted (head and arms)

Figure 2: Video frame to keypoint extraction

XAI MODEL EFFECTIVENESS

XAI Model	Interpretability	Usefulness	Interdependencies	Visual Clarity
Feature Importance	Plain-text overall importances; human-readable	Global analysis; shot-type-level focus points	Not captured; requires manual testing	Plain-text or bar chart
Permutation Importance	Same as Feature Importance	Same as Feature Importance; good for comparison	Same; manual changes needed	Plain-text or bar chart
SHAP	Local + global attributions; numerical feature weights	Explains both specific shots & global trends	Some co-occurrence inference; not direct	Force, waterfall, summary plots
Grouped SHAP (Joint)	Grouped coordinates per joint; easier to interpret	Highlights joints; good for joint-level feedback	Patterns across joints; not direct	Bar plots per joint
Grouped SHAP (Limb)	Grouped by limbs; intuitive for coaches	Highlights limbs; useful for high-level insights	Inter-limb only; not detailed	Simple bar plots
LIME	Local explanations; human-readable but less intuitive	Explains single shots; low impact values	None built-in; possible over multiple samples	Plain-text only
ALE Plots	Effect of single features; easy with guidance	Reveals feature effect types; struggles with high-dim data	Second-order effects only; time-consuming	1D/2D plots; noisy with outliers
Grad-CAM	Visual heatmaps; highly intuitive	Shows spatial attention; validates model focus	Visual co-activation (e.g., bat+head); not keypoint-specific	Frame heatmaps
	Table 2	2: XAI Model Evalua	ation table	1
		Grouped SHAP Feature Im	portance (Class 1)	
Left Right	Pinky -			
Right	wist -			
Left Rights	Wrist -			
Pughte	NOOM 1			

Grad-CAM COMPLICATIONS

Lack of CNN trained on Pose-Estimation datasets caused focus on wrong image elements, but with high accuracy of 92%

Figure 4: Grad-CAM results with focus on terrain

KEYPOINT CONTRIBUTIONS

· Most influential keypoints easily distinguishable by observing Feature & Permutation Importance and SHAP summary plot and GroupedSHAP (Joint) RightPinky y and LeftPinky v (keypoints

Figure 5: SHAP summary plot

KEYPOINT INTERDEPENDENCIES

SHAP and LIME explanations, and global Grouped SHAP (Limb) explanations Interdependencies between naturally connected body parts observed (e.a. wrist and pinky, elbow and wrist). Most visible in wrist and pinky SHAP

values in Waterfall Plots GroupedSHAP (Limb) presents prediction reliance more on Right

LeftElbow_y: 0.0038 RightPinky_x: 0.0037 Figure 9: Permutation importance

4.CONCLUSION

XAI MODEL RECOMMENDATION

SHAP proved to be the best performing model for cricket shot analysis due to its global and local explanations allowing for observation of feature interdependencies, flexibility in explanation visualizations and it being model-agnostic.

FUTURE RECOMMENDATIONS

- Refine dataset used more shot techniques. data processing based on dominant hand and skill level, greater volume and higher guality of videos.
- Test alternative classification models and poseestimation models (e.g. OpenPose, XGBoost, etc...)
- Test alternative XAI models (e.g. alternative saliency maps (SmoothGrad), Anchors, learned features).
- Systematic benchmarking of explanation quality. using objective metrics such as fidelity, sparsity, and stability of the explanations.
- Expert evaluation of explanations to assess their alignment with textbook definitions of cricket shot techniques.

CONNECTED WORK

For a detailed overview of how SHAP explanations of cricket shots can be used in real-world applications, refer to "Generating expertise specific explanations in cricket pose estimation" by Ansh Kumar

ACKNOWLEDGEMENTS

- · Wagas Ahmad et al. "Optimized deep learningbased cricket activity focused network and medium scale benchmark". In: Alexandria Engineering Journal 73 (2023), pp. 771-779.
- Siddiqui et al. "Enhancing cricket performance analysis with human pose estimation and machine learning". Sensors, 23(15), 2023. ISSN 1424- 8220, doi: 10.3390/s23156839, URL https://www.mdpi.com/1424-8220/23/15/6839.
- Christoph Molnar. Interpretable Machine Learning. 3 edition, 2025. ISBN 978-3-911578-03-5. URL
- https://christophm.github.io/interpretable-mlbook.

CONTACT INFO

Student name: Bruno Martinović B.Martinovic-1@student.tudelft.nl Supervisor: Danning Zhan Responsible Professor: Uiwal Gadiraiu

Sweep shot technique.

Figure 6: SHAP waterfall plot