BACKGROUND ” >

e |mage classification is a hugely important area of research
which has given rise to many applications, ranging from the
detection of diseases in medical images to self-driving cars.

e (Great success has been achieved using models such as

Convolutional Neural Networks.

e Accuracy drops rapidly when the test images have the same
type of information as the training data but with systematic .
modifications, known as distribution shift. We say that these

Images are out-of-distribution.

o Regularization is any modification made to a learning

algorithm to reduce its generalization error.
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CONVOLUTIONAL NEURAL NETWORK (CNN)

o Does an unregularized MHA perform better
than an unregularized CNN under distribution shift?
e Do regularization schemes, with tuned hyperparameters,
improve the accuracy of the CNN and MHA
architectures under distribution shift?
Does a regularized MHA have a better accuracy than a
regularized CNN under distribution shift?
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DATASET USED

The dataset was a
MNIST dataset with

CIFAR10 images used
as backgrounds
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The architectures on the left are the baseline architectures to which
regularization will be applied.

RESULTS
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CONCLUSION
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? } ;-? e Regularization is an effective tool for improving the generalization
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Using different combinations of regularization techniques.
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