

An evaluation of the reentrancy vulnerability on GoQuorum-based smart contracts

1. Introduction

- In Ethereum, smart contracts were integrated
 - Smart contracts can thus be used to automate behaviour, both productive and exploitative
- GoQuorum is based on Ethereum, with a focus on security and **privacy**
- Motivation
 - little research into GoQuorum-based smart contract vulnerabilities so far
 - reentrancy is well-known but missing depth
 - complete evaluation of both vulnerability and countermeasures

2. Research Question

How is the reentrancy vulnerability exploited in GoQuorumbased smart contracts, and what can be done to prevent or mitigate the associated risks?

References

Image references introduction, left to right [1] The Noun Project, [Online]. Available at: https:// thenounproject . com / term / smart - contract / 1688703

(Accessed on 06/29/2021)

[2] Vecteezy, [Online]. Available at: https://www.vecteezy.com / vector - art / 548141 -

cryptocurrency - and -blockchain-icons-or-logo (Accessed on 06/29/2021).

[3] Ethereum Foundation, [Online]. Available at: https /ethereum.org/en/assets/

(Accessed on 06/29/2021).

[4]ConsenSys, [Online]. Available at: https://cdn .consensys.net/uploads/QuorumAvatarBlue02.png (Accessed on 06/29/2021).

3. Methodology

- 1. Explore literature
- 2. Ethereum vs GoQuorum
- 3. Collect vulnerabilities
 - a. Implement vulnerability

b. Implement

countermeasure

- c. Analyse side-effects
- 4. Collect findings

Reentrancy

- from the victim.
- Both public and private contracts may be vulnerable
- Attack features
 - Contract's control flow on a state variable
 - Gas limit
- Countermeasures per category

Table 1: Categorized prevention and mitigation techniques. Each presented technique is categorized into addressing one of three vulnerability aspects: attack features, function access, and vulnerability awareness. Moreover, M marks a mitigation technique and *P* a prevention technique.

5. Discussion

- Testing done on small network
- Only one vulnerability evaluated

6. Future work

Countermeasure effectiveness

vulnerabilities should be evaluated

• Reentrancy in big network.

More known Ethereum

in a GoQuorum context.

testing

- Combination of other techniques, especially those of the awareness category

specific vulnerabilities. Other Ethereum soft-fork should

get a similar treatment

Studies into novel GoQuorum-

4. Findings

• Reentrancy exploits external contract calls combined with incorrect contract state updates to extract ether

Countermeasure	feature	access	awarene:
Correct state variable update	Р		
Gas limit	М		
Mutex/Guard		Р	
Analysis tools			М
Naming convention			М
(Enhanced) permissioning		М	
Private contract		М	

7. Conclusion

- Reentrancy countermeasures
 - Checks-effects-interaction pattern
- First scientific paper presenting methods to deploy and interact with GoQuorum network.

by Sara Op den Orth S.M.OpdenOrth@student.tudelft.nl - 02-07-2021 Responsible professor: Kaitai Liang Supervisor: Huanhuan Chen (PhD)