Ioan Hedea, i.m.hedea@student.tudelft.nl, Delft University of Technology Responsible Professor: Mathijs de Weerdt, Supervisors: Léon Planken, Kim van den Houten

### 1. Research Question & Aim

Gap in PyJobShop: PyJobShop's solver handles flexible job-shop makespan, earliness and tardiness, but it does not natively model or enforce hard deadlines under uncertainty.

**Objective:** Extend the Flexible Job Scheduling Problem pipeline with dummytask hard deadlines and STNU-RTE\* real-time control to guarantee that jobs finish before their deadlines despite bounded duration variability.

### **Research Sub-Questions**

- 1. Slack bound: Is  $\Delta^* = \max \sum_t (\overline{d}_t \underline{d}_t)$  both necessary & sufficient?
- 2. Weight tuning: How do  $(w_e, w_t)$  shift the average earliness-tardiness Pareto front?
- 3. Noise limit: Up to what  $\alpha$  can one policy keep  $P_{tardy} < 0.32$ ?
- 4. **Runtime growth**: How does end-to-end wall-time scale with |T|?

# 2. Methodology in Four Steps

### 1. Offline CP design

- Flexible Job-Shop model with alternative machines.
- Add one *dummy deadline task* per job.
- Search a single slack  $\Delta^*$  that makes the CP model feasible.
- Grid-sweep soft weights  $(w_e, w_t)$  for the earliness-tardiness Pareto.

### 2. STNU build

- Map every task to *start / finish* nodes; add resource-chain edges.
- Encode duration noise  $d_t \sim \mathrm{U}[(1-\alpha)\underline{d}_t, (1+\alpha)\overline{d}_t]$ , with  $\alpha \in \{0.1, 0.2, 0.5, 0.8, 1.0, 2.0, 3.0\}$ .

#### 3. Guarantee phase

- Check dynamic controllability (Java CSTNU tool).
- If DC holds, hand schedule to the real-time dispatcher RTE\*.
- Run 500 Monte Carlo simulations for the STNU considering  $d_t$ .

#### 4. Evaluation

- Quality metrics:  $C_{\text{max}}$ , mean earliness E, tardy prob.  $P_{tardy}$ .
- Runtime metrics: CP solve time, DC check time, RTE\* latency.
- Benchmarks: public Kacem 1–4 suite (4–10 jobs, 12–55 ops, 5–10 machines).

#### **Key References**

[1] K. van den Houten et al., "Proactive and Reactive Constraint for the Flexible JSSP," IEEE T-SMC C 32, 2002. Programming for Stochastic Project Scheduling with Maximal Time- [4] L. Hunsberger, R. Posenato, "The RTE\* Dispatcher for STNUs," Lags," 2024. [2] P.H. Morris, N. Muscettola, T. Vidal, "Dynamic Controllability of [5] R. Reijnen et al., "Job-Shop Benchmark Environments and In-STNUs," *IJCAI 2001*.

[3] I. Kacem, S. Hammadi, P. Borne, "Multi-objective Optimisation *ICAPS 2024*.

stances," arXiv 2308.12794, 2025.

# TUDelft ALGORITHMS FOR DYNAMIC SCHEDULING IN MANUFACTURING TOWARDS DIGITAL FACTORIES

# 4. Hard-Deadline Slack Calibration (RQ1)

Slack  $\Delta^*$  required vs. uncertainty 300 250 ∿\* œ Critic 200 150 100 0.5 1.00.0 1.5Duration variation

Duration Variations (x) vs. slack  $\Delta$  (y).

- One global slack value per duration variation  $\alpha$  guarantees both offline feasibility and online dynamic controllability.
- Closed-form bound  $\Delta^* = \max \sum_t (\overline{d}_t \underline{d}_t)$  is tight to  $\pm 10$  tu on all instances.

# 5. Soft-Deadline Trade-off (RQ2)



Pareto front ( $w_e, w_t$ ). Elbow  $w_e = 5/w_t = 20$  achieves  $P_{tardy} < 0.32$  for < 2% makespan hit at  $\alpha = 0.6$ . • Early bonus:  $w_e=1$  cuts  $P_{tardy}$  by 10 % and trims  $C_{max}$  1 tu. • Sweet spot:  $w_e=5$  drops another 9 pp for +1 tu; gains flatten beyond.



# 6. Robustness vs Uncertainty (RQ3)

- Mean makespan rises 15 % from  $\alpha = 0$  to 1.0 (linear degradation).
- the RQ3 target of  $P_{tardy} < 0.32$ ).
- with larger  $\Delta$ .

# 7. Pipeline Scalability (RQ4)



Fig. 3 — Near-linear wall-time vs. task count; DC check < 1% of total. • CP:  $\approx 0.33 \, s \times |T|$ ; 500-run RTE\*:  $\approx 1.9 \, s \times |T|$ .

• 55-task Kacem-4 solved & simulated in 126 s on an M1-Pro laptop.

# 8. Limitations & Future Work

- normal fits and probabilistic STNUs.
- could track drift on the shop floor in real time.
- Industrial validation Replay the pipeline on real industrial data
- patch on the same  $\alpha$ -grid.

# **9.** Conclusions and Recipe for Practitioners

- loss on Kacem-3/4-size shops.
- DC.

• Residual earliness drops below 50 % at  $\alpha = 1$ ;  $P_{tardy}$  then climbs steeply (exceeds

• Heuristic trigger: when shop-floor earliness < 0.5 of nominal slack, re-optimise

• Uncertainty model — Uniform i.i.d. bounds ignore correlation and heavy tails; log-normal draws already break DC on Kacem-4; move toward Gamma / log-

• Slack granularity — Same  $\Delta^*$  for every job is safe but wasteful; per-job slack budgeting plus a "distance-to-DC" surrogate could trim margins 15-20 %.

• Auto-tuning — Current  $(w_e, w_t)$  grid search is brute-force; Bayesian or RL tuning

• **Reactive benchmark** — Compare against rolling-horizon CP and rule-based dis-

• Soft deadlines: pick  $w_e \in [5, 20]$ ,  $w_t \in [0, 20]$   $P_{tardy} < 0.32$  and < 5% makespan

• Hard deadlines: set  $D_i = \sum_t \min d_{jt} + \Delta^*$  with  $\Delta^* = \max \sum (d - \underline{d})$ ; guarantees

• Health trigger: when on-line earliness falls below 50 % of nominal slack, rerun the CP+STNU loop with a larger  $\Delta$  (empirically catches the  $\alpha > 1$  failure mode).