
An analysis of Structured Encryption (StE) compared to other computation techniques on encrypted data

4. Technologies & Characteristics

6. Conclusion

1. Motivation & Background
Outsourcing data and computation is very common nowadays with

cloud environments. However, sensitive data with high privacy requirements,
such as medical records, cannot be stored as-is on a remote server. It must
be encrypted. Classical encryption techniques, such as AES, do not allow
the server to make any kind of operation on the data, essentially making the
computation power of the cloud useless.

Structured Encryption is a set of techniques that stores structured
data encrypted on an untrusted server, while still allowing the client to
outsource operations securely.
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2. Research Question
What are the capabilities and limitations of
modern Structured Encryption technologies ?

How does Structured Encryption perform
compared to Oblivious RAM (ORAM), Fully
Homomorphic Encryption (FHE), Trusted
Execution Environments (TEEs) and Secure
Multiparty Computation (SMC) ?

State of the art technologies

Threat Models / Limitations
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3. Methodology
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• SSE (Symmetric Searchable Encryption) : symmetric-key cryptographic 
technique allowing a user to search over encrypted labeled data stored on an 
untrusted server, without revealing the data or the search terms. [1]

• StE : generalization of SSE to any data structure. [2]
• Semi-honest model (honest-but-curious) : the server performs the 

operations honestly but learns as much info as possible in the process

4.2 Efficiency

4.1 Functionality and Use Cases

• Labelings: boolean queries [6] (AND, OR and NOT), 
add / delete operations [5], 
substring & wildcard queries

• Numerical data: range queries [7]

• Graphs: adjacency, shortest path and focused subgraph queries [2]
• Concept and Knowledge Graphs (for AI models) [8]

ORAM

FHE

MPC

TEEs

= technique that hides memory access patterns. [12]

4.3 Security
• CKA1 (Chosen Keyword Attack) : non-adaptative security [9]

• CKA2: adaptative security, attacker can choose keyword after seeing the encryption. This is 
the standard for StE schemes.

• UC (Universally Composable) : a cryptographic protocol remains secure even when 
composed with other arbitrary protocols. Very strong security but often too heavyweight.

• Leakage: information leaked to the server in the setup or query process
• Volume Leakage: the size of the result of a query
• Access pattern leakage: which data corresponds to the query

• File-injection attacks on dynamic multimaps: 1% 
of file injected provides 40% efficiency (2016)

• Inference attacks on keywords: exponential in 
the amount of keyword and requires 70% of 
dataset knowledge to become slightly 
successful. (2012 & 2015) [10]

• Inference attacks on range queries: only 
𝑂(𝑁 log 𝑁) queries needed to reconstruct the 
entire data (2017 & 2018)

• Encrypted databases attacks on column-equality 
leakage (2024)

Encrypted Databases
(SQL queries) [3]

⇒ Usages: MongoDB’s Queryable Encryption, Cipherstash, Crypteron
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Attacks Countermeasures

⇒ access-pattern hiding schemes
(ORAM – based schemes, from 2016)
e.g. TWORAM, EMMavl

⇒ volume-hiding schemes (from 2018)              

e.g. d-DSE, XorMM [16]

(polylog efficiency overhead)   

⇒ backward and forward private schemes
(addition/deletion do not reveal information 
about previous and future queries)

𝜔(𝑁)𝑂(𝑁)Storage:

𝑂(1) 𝜔(1)Locality:

𝑂(𝑁)

𝑜(log 𝑁)

in practice
• I/O Efficiency Tradeoff [15]

N is the number of keyword-document pairs, and the locality is the amount of memory accesses for a search

• Parallelism : improvement with sufficient cores: 𝑂(𝑟)  →  𝑂 log 𝑁 [4]
𝑟 is the size of the query result

• Concurrency : lock-free concurrent update operations

= method that allow multiple parties to jointly compute a function over their inputs
without revealing them. [13]

= encryption scheme allowing computation to be directly performed on encrypted data. [11] = secure area within a processor ensuring that data and code are protected. [14]

Differences with StESimilarities with StE

Generic data access instead of structured dataThreat model: Semi-honest

The client must keep track of the data structureSublinear (logarithmic) efficiency

Does not leak the access pattern in queriesClient-Server architecture

• ORAM can be used as a component in StE schemes to hide the access pattern and provide protection
against inference attacks, by adding a logarithmic overhead to the query complexity. e.g. TWORAM

Differences with StESimilarities with StE

Can perform any computationThreat Model: Semi-honest (sometimes malicious)

Does not leak any informationMany different protocols for many use cases

Client-Server and Distributed architectureBoth can perform Private Set Intersection (PSI)

Differences with StESimilarities with StE

Can perform any computationClient-Server architecture

Does not leak any informationNon-interactive scheme

Polynomial efficiency overhead

Differences with StESimilarities with StE

Can perform any computationClient-Server architecture (cloud environment)

Threat Model: malicious server softwarePractical efficiency (near native)

Hardware-based

• StE provides the most efficient solution for Updatable PSI, which is a typical MPC problem. MPC remains the
best solution for static PSI.

• FHE can be used to perform the same task as StE schemes with no leakage, but with impractical efficiency

• StE schemes provide practical efficiency 
and functionality and is used in real-world 
DBMS like MongoDB

• StE leaks information to the server, and 
schemes not providing the most recent 
security features like forward/backward 
privacy, volume-hiding and access pattern 
hiding, can be attacked easily.

• Future research should focus on new 
attacks and study of the complex leakage 
profile of StE schemes.

• In contrast with the other techniques, StE 
schemes do leak some information, to 
achieve practical efficiency.

• Future research could focus on the creation 
of a precise benchmark to compare  these 
techniques on practical scenarios.


