

1. Background
• Byzantine Fault Tolerant (BFT) protocols allow the non-faulty
participants in a distributed system to reach consensus even if some
of the participants are malicious or unreliable.

• Proposals for practical BFT protocols: PBFT, Zyzzyva, BFT-SMaRt,
Tendermint, hBFT and HotStuƯ

• HotStuƯ can drive consensus at the pace of actual
network delay and with linear communication complexity.

• For the pipelined HotStuƯ variants, each view
simultaneously serves as each of the 4 Basic HotStuƯ
phases for the 4 chained nodes. (Figures 1 and 2)

• BFT protocols may have design or implementation faults so having
reliable testing tools such as ByzzFuzz is important.

• ByzzFuzz uses round-based small-scope structure-aware
mutations to simulate process faults

• ByzzFuzz applies round-based network partitions to
simulate network faults

Implementing and Preforming Randomized Tests on
the HotStuƯ BFT Protocol
Author: Lubomir Marinski (L.V.Marinski@student.tudelft.nl)

Responsible professor: Dr. Burcu Kulahcioglu Özkan
Supervisor: João Miguel Louro Neto

2. Research Questions
• RQ1 - Can ByzzFuzz find any bugs in our implementation of the
HotStuƯ protocol?
• RQ2 - How does the bug detection performance of ByzzFuzz
compare to a baseline testing method that arbitrarily injects network
and process faults?
• RQ3 - How do small-scope and any-scope message mutations of
ByzzFuzz compare in their performance of bug detection for the
HotStuƯ protocol?

3. Methodology
• Implement the HotStuƯ BFT protocol in Java
• Create faulty variants of our implementation
• Test for bugs using both ByzzFuzz and ‘Random’ baseline testing
strategy
• Test using both small-scope and any-scope mutations
• Use the obtained empirical data to answer the research questions.

5. Experimental Setup
• We use correctness invariants to detect faults
 • Agreement (safety)
 • Termination (liveness)
• Baseline implementation without intentional flaws
• 3 flawed implementations : Lower quorum, No proposal view
validation, No proposal view validation

• Many experimental configurations using diƯerent parameters
including number of process faults, number of network faults, max
round with faults, mutation scope
• We run 1000 scenarios for each configuration

7. Conclusions
• RQ1 – ByzzFuzz was able to detect all introduced flaws.

• RQ2 – For process faults there was no significant performance diƯerence
between ByzzFuzz and the ‘Random’ schedular. The network partitions of
ByzzFuzz performed better than randomly dropped messages.

• RQ3 – For all 3 test implementations any-scope mutations outperformed
small-scope mutations. Small-scope mutations failed to detect one of the
introduced bugs.

6. Results
No faults were discovered with the baseline implementation. The results for the

faulty implementations when tested with ByzzFuzz are listed in Tables 2, 3 and 4.
Table 2: ‘Low quorum’ implementation, ByzzFuzz results

Table 3: ‘No proposal view validation’ implementation, ByzzFuzz results

Table 4: ‘Non-monotonically increasing bexec’ implementation, ByzzFuzz results

Figure 1: Chained HotStuƯ View Change - The leader of each view
collects votes for the node proposed during the previous view

Figure 2: Chain where each node represents diƯerent protocol phase

4. Implementation
Additional functionality not specified in the HotStuƯ paper, which
aƯects the protocol’s properties, needs to be implemented for the
protocol to work in practice:

• Replica catch-up mechanism
• Client requests de-duplication
• Leader election
• Pacemaker logic
• Message validation
• Handling timeouts

Table 1: Message mutations

