Paco Pronk Qing Wang Ran Zhu Mingkun Yang

Introduction

- Touchless interfaces can make user interaction more intuitive and accesible
- Provide a way to interact with systems while limmiting the spread of germs
- Could provide asistance in places where a sterile environment is critical

Problem

How can we use embedded machine learning to create a system that can recognise air-written characters?

Background

- **Previous attempt** at digits and gestures by several bachelor and master students [1 5]
- No attempt yet at recognizing characters
- Main gap in current research can be found in the **available data**.

Preprocessing results

Results

- Achieved a between-participant accuracy of 50.80% and a within-participant accuracy of 67.82%
- Robust reprocessing pipeline resulting in an 36.45% increace in accuracy
- Created a dataset of **1500** air-written characters

Discussion

- Acceptable accuracy, but model is subject to overfitting
- Significant **increase in data** necessary to reduce overfitting problem
- Additional hyperparameter search needed on data increace

References

[1] Dimitar Barantiev. Designing a software receiver for gesture recognition with ambient light, 6 2022.
2] William Narchi. Recognising gestures using ambient light and convolutional neural networks, 6 2022.
[3] Stijn van de Water. Designing an adaptable and low-cost system for gesture recognition using visible light, 6 2022.

