

Evolving a Search Procedure for Program Synthesis

Michał Teodor Okoń Responsible professor:

Sebastijan Dumančić

Research Question

Background

A task of constructing programs meeting formal specifications [1].

• Three different domains with hundreds of tasks are considered: robot path-planning, string trans-

formations and ASCII art.

• For each task, a set of examples consisting of input and output is provided. The aim of the program

synthesizer is to construct programs that, given the input, return the desired output.

• Each of the domains is assigned a separate set of tokens comprising the Domain-Specific Language

(DSL) from which the programs are constructed.

• To search the program space, a range of different search procedures can be used or even com-

bined.

1 2

[1] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. In Foundations and Trends in Programming Languages, volume 4, chapter Introduction. 2017. doi: 10.1561/2500000010.Michael Negnevitsky.

[2] Evolutionary computation. in Artificial Intelligence A Guide to Intelligent Systems Artificial Second Edition, pages 219–257. 2005

1. Chromosome are defined as a chain of ordered search procedures and timeouts. Initial popula-
tion of fixed size is chosen randomly.

2. Each chromosome is assigned fitness depending on how fast and how many tasks the search
procedure solves. Two different fitness functions are considered.

3. Parents of the next generation are selected using tournament selection.

4. Two-point crossover is used to combine the parents with a probability of 0.8.

5. A range of mutation operators is used to mutate the resulting individuals. Multiple mutation
probabilities are tested.

6. The process is repeated for around 30 to 50 generations, depending on the domain.

Evolution Process 4

Is it possible to develop an efficient search procedure as a combination of simpler
search procedures by means of genetic algorithms?

LNS 1s MH 0.5s A* 0.2s

Starting from a set of the randomly generated individuals (the first generation), a genetic algorithm
performs the selection of the fittest specimen and propagates their genes further using mutation and

crossover operators [2]. The process continues until a desired individual is found.

Program Synthesis

Methodology 3
• Literature study to discover optimal operators and parameters

• Designing the genetic algorithm

• Performing experiments to establish optimal value of mutation probability and compare fitness
functions

• Evolving the most optimal search procedures on three different domains and comparing results

Results

Several values of a mutation proability have been tested in the robot domain. This parameter repre-

sents how likely each chromosome is to mutate before being placed in the next generation.

The mutation probability of 0.1 manages to find a perfect degree of randomness without descending

into a chaotic search. This claim has been confirmed by experiments performed in two other domains.

5

Where succ is the success rate, time is the summed timeout.

Two fitness functions

Different Mutation Probabilities

Weak fitness function manages to find a balance
between the number of solved tasks and the syn-
thesis time. One of the chains synthesised by this
function is highlighted below.

Strong fitness function aims for programs that
solve all the tasks. No combined search proce-
dures have been found to be more efficient using
this method.

The performed experiments have proven that it indeed is possible to develop an effi-
cient, combined search procedure with the use of genetic algorithms. However, the

results are strongly dependent on the domain, considered search procedures, and the
definition an 'efficient search procedure'.

Conclusion 6

Evolved Combination of Search Methods

Combination of Brute and A* algorithms
result manages to solve more tasks than
their singular counterparts in the string
domain. Brute is a greedy search algo-

rithm. First, the search space is trimmed
by Brute to then focus on a smaller part of

it with a more exploratory A*.

GP 1s LNS 1s

crossover
Brute 0.5s LNS 1s

GP 1s A* 2s

Brute 0.5s A* 2s

Brute 0.5s LNS 1s mutation Brute 0.8s LNS 1s

Fig. 1: Visualization of program synthesis in the robot path-planning domain.

Fig. 2: Graph depciting steps of a genetic algorithm.

Fig. 3 Combining multiple search procedures to search the program space consisting of tokens (blue nodes).

Figs. 4/5: Average fitness and execution times over generations with different mutation probabilities.

Table 1: Comparison between a combined search procedure of Brute
and A* and two procedures consisting of their singular equivalents.

Table 2: Comparison between searches evolved using two
different fitness functions. Acc stands for accuracy, Avg_ t is

the averate execution time per task.

Both fitness methods can be considered valid
and their suitability relies on the preference of
the user, who needs to answer the question of

whether sacrificing half of the tasks is worth the
difference in the execution time.

Genetic Algorithms

