
A Type Checker For a Subset of Java Built On Scope Graph Semantics

<- Code
  ​  ​on
 Github

Omar Thabet (o.thabet@student.tudelft.nl)
Supervisors: Casper Bach Poulsen, Aron
Zwaan
CSE 3000 2023/05 Phased Type Checker For Java

Type checking plays a crucial role in programming, ensuring the correctness of
programs.
 Scope graphs have emerged as a novel approach for representing program
scoping and name bindings.
Ministatix, is an implementation of Statix which allows for constructing type
checkers based on the programming language specification.
Ministatix was use to implement a type checker for a subset of the Java
Programming language where the steps of type checking different components
are interleaved and their order is abstracted.
Another approach to type checking using scope graphs is to manually schedule
the order of the type checking in phases.

 Introduction:

This study makes the following contributions:

 Demonstration of the phased approach through the implementation of a type
checker for a subset of Java.
Discussion of the differences between the phased type checker and Ministatix.
Evaluation of the testing methodology [3] and comparison of the supported Java
features in the aforementioned type checkers.
Comparison between the declarativity and extendability of the code in the two
type checkers.

 Contribution:

How does the phased approach compare to the Ministatix implementation?
How many phases are required for effective implementation?
How easily can the program be extended to include additional Java features, and
will this necessitate additional phases?

 Research Question:

The phased type checker makes use of the Phased Haskell library [2] to construct
and query the scope graph.
There are two types of Nodes as shown in figure 1:

Scope nodes are oval shaped and represent scopes.
Sink nodes are rectangular and represent declarations and contain data
such as a scope reference in case of class declaration sinks or type in case
of variable declaration sinks.

The scope graph uses directed and labeled edges to represent the relationships
between two nodes.

 Scope Graphs:

package ModuleB;

import ModuleA.Animal;

public class Pet {
 //
}

program
0

 1
2

3 4
5

package ModuleA;

public class Person {
 public void foo() {
 //
 }
}

ModuleA 1 ModuleB 2

Person 3

Animal 4

Person

Animal

Pet 5

Pet

M M

Cl

Cl

Cl

T

T

T

P P

P P

P

package

public class Animal {
 char bar;

}

foo void [] D

bar char

D

I

 Type Checking In Three Phases:

Convert the Java Syntax an Abstract Syntax Tree represented by datatypes.
Type check the program in three phases:

Explore all packages and classes in the program.
For all classes, resolve Imports then type check class member declarations
(Fields, Methods, Constructors) while ignoring initial field values and
method bodies.
For all class members, type check method bodies and field initial values

1.
2.

a.
b.

c.

 An Example Program and it's corresponding Scope Graph:

Discussion:

Both type checkers support a different subset of the Java features, the main differences are:

 Java Features Support:

Conclusion: Declarativity, easy of use and limitations:
 Phased TC:

Less Declarative due to the predefined order of execution.
Easier to follow the flow of the program due the clearly defined phases.
The addition of more Java features such as sub-​typing requires additional phases and further
modifications to the current phases.
Has a single bug that is difficult to fix: The wrong error message is given when a class with the
same name is imported.

 Ministatix:
More declarative as the order of execution is abstracted with the help of Critical edges [1].
More difficult to debug due to interleaved process.

References:
[1] Rouvoet, A., Van Antwerpen, H., Poulsen, C. B., Krebbers, R., & Visser, E. (2020). Knowing when to ask: sound
scheduling of name resolution in type checkers derived from declarative specifications. Proceedings of the ACM on
Programming Languages, 4(OOPSLA), 1–28. https://doi.org/10.1145/3428248
[2] https://github.com/heft-​lang/hmg
[3] https://github.com/OmarTheMostWanted/scope-​graph-​scheduling-​bsc/blob/master/lang-​java/tests/Main.hs

Future Work:
Fix bugged error:
Extend the supported feature set to match
Ministatix.
Implement parallel type checking.
Early termination of queries for a more efficient
implementation.

Phased TC supports:
Loops
If statements
Method invocation

Ministatix supports:
Hierarchical package and
class structures
Interfaces

Method overloading
Constructor overloading
Arrays

Sub typing
Nested classes
Named and on
demand imports

Fig 1

 Monotonic queries:

Every type checker have to implicitly or explicitly ensure that variable name resolution
results remain consistent as the program environment is extended:

In scope graphs, a query is not a part of the graph but it's an algorithm that
traverses the graph following a path with a given regular expression.
In Ministatix, the ordering of queries is abstracted using language-​independent
critical edges.
The phased type checker ensures stable query results by ordering the phases
such that no further additions could effect the outcome of the query.

Scope Graph Structure and labels:

Ministatix requires the inclusion
of edges in two directions as the
scope graph needs to be
traversable in both directions.

The phased type checker utilizes
a simpler scope graph structure,
where traversal occurs in a single
direction from lower scopes to
higher scopes.

s_prog
()

s_pkg
(PA, PKG(s_pkg))

LE
XPK

G

s_cls
(CA, CLass(s_pkg))

LE
X

TYPE

s_ctor
(CTOR(s_ctor))

LE
X

CTO
R

s_fld
(x,Int) FIELD

program
0

PA 1M

 1

P

CA 2Cl

2

P

CA []D

x Int

D

Person

T

package PA;

public class CA {
 public int x = 0;
 public CA() {
 }

}

TYPE

s_this
ty THIS

Ministatix Scope Graph Phased Type Checker Scope Graph

https://doi.org/10.1145/3428248
https://github.com/heft-lang/hmg
https://github.com/OmarTheMostWanted/scope-graph-scheduling-bsc/blob/master/lang-java/tests/Main.hs

