Building Type Checkers using Scope Graphs for a Language with a Substructural Type System

“4
J.G. Knapen (j.g.knapen@student.tudelft.nl) - Supervisors: Casper Bach Poulsen, Aron Zwaan TU Delft
CSE3000 27/6/2023
1. Background & Research Question 2. Problem Description 4. Evaluation
Type checker has ability to catch errors at Phased Haskell library Test suite
compile time. 1.ATerms Some test cases different expected results due to phase
2.Abstract Syntax differences between the two implementations.
Substructural Type Systems 3.Typechecking program Results
Linear types are used exactly once Methodology TestSuite [Cases [Tried | Failures | festSulte
Affine types are used at most once 1.(re)format typing rules of David (2002) [1] Linear tests . Linear test s 0
Dependent types are dependent on other 2.Calculus implementation (without scope graphs) calculus Implementation SCOp€e grapn Implementation
values/types 3.Exploration of possible ideas and approaches Failures due to Unification Error, likely caused by recursive
4.lmplementation using scope graphs Abs.
Scope graphs are a data structure that can 5.Evaluation comparing both implementations Code analysis
represent lexical scoping of namesin a e Limited expressiveness: no specific error for different

program. They are directed graphs that 3. Contribution substructural types

capture the nesting of scopes and the e Good extensibility: recursive substructural types and

relationships between them. Defined typing rules for following expressions: expressions extension require minimal knowledge
e Variable identifier: Ident str e Limited documentation

Monotonicity means that a fixed query in a * Addition: Plus el e2
fixed scope always returns the same result. ° Appllt::atlon: App e.l e2 5. Conclusion and Future work
This is an important feature of scope graphs. * Function Abstraction: Abs strty el e2 conclusi
e Let-Binding: Let strty e onctusion
: : Successful implementation:
Can we implement a type checker using . P . .

: : - e Potentially easy extension with other substructural types
scope graphs for languages with a Calculus implementation . E . . 1 limited knowled
substructural type system? e Used lang-hm [2] as boilerplate o xpressmns'extensmn with timited kKnow e. ge |

e Extended type with linearT & affineT Limited evaluation due to lack of comprehensive test suite.
e Added Let-Bindings Future Work
(.
e Adjusted typecheck function to return context More comprer:le-nswe test suite:
letx =4 Scope graph implementation e Cover addltlcf)nal edgg cas'es | |
N X + X -B\ Solution: keep count of usages of a variable. * Test cases with combinations of different typing
Added an extra phase at the end to check usage Explore mtegratlgn of chosen solution with other language
r , count of substructural types. features & paradigms.
@— U —- UsageDecl: Symbol -
‘ ’ | | Syntax Type Checking 6. References
P \U . data Expr 1.Input code is parsed to Expr [1] David Walker. Substructural type systems. In https://mitpress-
l \{ UsegeDed: Symbol - Num Int 2.Expr is type checked while building scope request.mit.edu/sites/default/files/titles /content/9780262
Dl Lneardect @) NumT J | Plus Expr Expr graph 162289_sch_0001.pdf, page 10, 2002
| | App Expr Expr a.UsageDecl is added to substructural [2] Jan Knapen. Scope graph scheduling bsc substructural type
| Ident String variables each them they are queried systems. https://github.com/JanKnapen/ scope-graph-scheduling-bsc-
i 3.Substructural variables are checked usin -
Fig. 1: Scope graph solution example | Abs String Type Expr the UsageDecl count g substructural. Accessed: June 23, 2023.

