
An analysis of system call set extraction tools on configurable Linux binaries
Comparing the performance of various system call set extraction tools on various configurations of the busybox application

Bryan van der Mark
b.b.vandermark@student.tudelft.nl

Responsible professor: Alexios Voulimeneas

Background

Research question

How do Chestnut’s Binalyzer,
Sysfilter and Confine compare

when performing system call set
extraction on various

configurations of the busybox
application?

Results

Methodology

System calls are a primary way in which applications
communicate with the kernel. By default, Linux allows a process

to invoke every system call. By sandboxing the process and
allowing only the system calls that are required for functionality,
we can reduce the attack surface of an application. Getting this

set of system calls is difficult to do by hand, and therefore
automated tools have been developed to automate this process.
In this research, we focus on Chestnut’s Binalyzer[1], Sysfilter[2]
and Confine[3]. Chestnut and Sysfilter perform static analysis on
binaries, while Confine analyses a Docker container and analyzes

all binaries ran during the container’s lifetime.

Busybox is a binary which contains lightweight versions of several
other binaries, intended for use in embedded applications.

Busybox is configurable, in the sense that a developer is able to
choose which applications (called applets) get included in the

compilation process.

References
[1] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. Automating seccomp filter
generation for linux applications, 2020.
[2] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P. Kemerlis.
sysfilter: Automated system call filtering for commodity software. In 23rd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2020), pages 459–474, San Sebastian, October
2020. USENIX Association.
[3] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Polychronakis. Confine:
Automated system call policy generation for container attack surface reduction. In 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), pages 443–458, San
Sebastian, October 2020. USENIX Association.

Busybox configuration
We compile busybox in the following configurations:
Default: The default configuration of busybox
Minimal: A configuration containing a minimal amount of features
All applets: A configuration containing all possible applets while keeping default settings
Maximal: A configuration containing all applets, all settings are enabled.
Cat: Similar to Minimal, but with the cat applet included in compilation.
For the maximal configuration, we create a configuration with debugging options disabled
and another with debugging options enabled. For Cat, we keep the default settings related
to the applet and create another (Cat minimal) with all of these settings disabled.

Confine containers
In order to run confine, each binary needs to be run in a
Docker container. To do this, we copy the binary to a
Docker image and use a script to ensure the binary is
running during the container’s lifetime. We create
multiple scripts and analyze Confine’s performance on
each one. One script continually invokes the binary,
while another script attempts to mimic regular usage of
the binary.

Chosen applications
In this research, we analyze two
applications: busybox and cat. Cat is
used as a minimal example, and used
to compare against busybox in the
specific case where busybox is
compiled to only include the
functionality of cat. We also make a
distinction between stripped and
unstripped binaries.

Conclusion

Sysfilter performs significantly better than Binalyzer on stripped binaries, however, it was not able to complete the analysis of
the configuration where all settings were enabled. On unstripped binaries, Sysfilter was able to complete analysis of all

binaries, but was outperformed by Binalyzer on all binaries except the ones it was not able to analyze without debug symbols.
Sets extracted with Binalyzer did not change between stripped and unstripped binaries. Binalyzer scaled significantly worse
than Sysfilter as more complexity was added to the binary. Confine performed worse than both Binalyzer and Sysfilter, and

both scripts resulted in the same system call sets.

B - Set extracted by Binalyzer
S - Set extracted by Sysfilter
C - Set extracted by Confine
B ∩ S - The intersection of B and S in cases where n(S)≠0
The legend to the right is used for both figures

