
Error-Tolerant Parsing and Compilation for Hylo: Enabling Interactive Development
Viktor Sersik 1

Supervisors: Andreea Costea1, Jaro Reinders1
1EEMCS, Delft University of Technology, The Netherlands

Goal of This Research

The goal of this research is to answer the following question: Canwemake the Hylo compiler robust

against incomplete programs? Can we continue parsing even if an error is found in unrelated code?

By answering the question, we hope to ...

... enable a smoother, more supportive programming environment for Hylo developer

... make the Hylo compiler robust against incomplete programs

... allow parsing to continue even if an error is found

Research Method

Our research followed a design-oriented and iterative approach, structured into three key phases:

1. Survey: Analysed existing Hylo compiler architecture and surveyed state-of-the-art

error-tolerant techniques from compilers like Roslyn and IntelliJ

2. Design: Selected and adapted suitable techniques for Hylo’s parser, prioritising AST

placeholders for initial implementation due to architectural alignment and lower complexity.

3. Implementation Evaluation: Developed a proof-of-concept prototype in Hylo’s Swift

codebase to demonstrate the viability of the Design

Why Error-Tolerant Parsing?

The implementation of error-tolerant parsing into the Hylo compiler is crucial for modern IDEs

because it ...

... enable real-time feedback for developers.

... enables support for intelligent code completion.

... maintains structural correctness of the Abstract Syntax Tree (AST), essential for

subsequent compiler phases.

... captures comprehensive diagnostics even from incomplete code.

Key Techniques Explored

Four prominent techniques to make parsers - and therefore compilers - more error-tolerant were

explored. All of them seem to be viable with the parser’s architecture for Hylo.

Phrase-Level Recovery.

If an error occurs, a local fix is inserted. Afterwards, the parser continues to parse. Mostly, the

fixes involve adding symbols at the end of lines, such asmissing semicolons or closing parentheses.

1 fun greet (name : S t r) : S t r = ” Hel lo , ” + name

2 p r i n t (g ree t (” V i k t o r ”)

3 v a l nums : L i s t < In t > = [1 , 2 , 3 , 4]

4 // . . .

Listing 1. Example of code with non-closed parenthesis

In this code example to the left,

there is an unclosed parenthesis

in line 2. With Phrase-Level

Recovery, a parenthesis would be

added at the end of the leading,

correcting it to

print(greet("Viktor"))

Combinator Wrappers with Recovery Logic.

When encountering faulty code within a combinator wrapper, correcting code is inserted. This

technique is very similar to Phrase-Level Recovery, but is an extension to parser combinators.

1 // . . .

2 v a l numbers = [1 , 2 , 3 , 4]

3 v a l a lphabet = [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’]

4 v a l numbers2 = [5 6 7 8]

5 // . . .

Listing 2. Example of an array without comma separators

In line 4, we can see that there are no

comma separators in the declaration of

numbers2 The recovery logic would add

commas to make the line val numbers2 =
[5, 6, 7, 8]. Afterwards, the parser can

continue with parsing.

Token Synchronisation.

If an error is encountered, the parser skips to the next ”synchronising token” and continues

parsing there.

1 fun example () −> I n t {

2 l e t x = 1

3 l e t y = * 2

4 r e tu rn x + y

5 }

6

7 fun example2 () −> I n t {

8 l e t x = 1

9 l e t y = 2

10 r e tu rn x + y

11 }

Listing 3. Example of incomplete code

In the case of a non-error-tolerant parser, the

example on the left would halt when

encountering the error in line 3. With token

synchronisation, the parser would skip to the

next synchronising token, in this example } in

line 5, and continue parsing below.

The main downside here is that example() will

now not be part of the scope for future

compiling stages.

AST Placeholders.

Add special placeholder nodes into the Abstract Syntax Tree (AST) when an error is encountered.

1 // . . .

2 l e t x = 1862 + ;

3 // . . .

For the example above, the

AST that is created is shown

in Figure 1 to the right.

Program

...

AssignmentStmt

SequenceExpr

DummyExpr

NameExpr(”+”)

NumExpr(”1862”)NameExpr(”x”)
...

Figure 1. Example AST with Placeholder Node

Integration with Hylo Compiler

To enable error-tolerant parsing within the Hylo compiler, two steps were added to the structure

of the already existing parsing process. The two steps marked in dark - Phrase-Level Recovery and

AST with Placeholders - are the two added steps.

Tokenizer

ParserState

Recursive Descent Functions

Phrase-Level Recovery

AST with Placeholders

Figure 2. High-level parsing process

The Tokeniser is responsible for producing a stream

of tokens. These tokens are fundamental for

identifying structural boundaries in the code.

The ParserState tracks the parser’s current position,

maintains diagnostics and contains the AST.

The Recursive Descent Functions implement the

grammar of the Hylo language.

The Phrase-Level Recovery here also includes

recovery logic for parser combinators. This step aims

to recover errors that can be easily fixed.

When an error cannot be recovered, a corresponding

placeholder node is inserted into the AST where the

error occurs.

Only the AST Placeholders have actually been implemented into a proof-of-concept prototypea

Prototype Implementation

To evaluate error-tolerant parsing in Hylo, a proof-of-concept prototypewas developed, focusing

on AST placeholders.

When a parsing error occurs, a dummy node is inserted into the Abstract Syntax Tree (AST),

containing metadata like source location and diagnostic message.

Parsing continues uninterrupted after each error, accumulating all diagnostics for collective

reporting.

Four types of dummy nodes were introduced: DummyDecl, DummyExpr, DummyPattern,
DummyStmt
These placeholder nodes preserve AST integrity and provide specific diagnostic messages.

Conclusions

The integration of AST placeholders marks a significant advancement towards error tolerance in

the Hylo compiler. This approach directly addresses limitations of traditional compilers in interac-

tive development by:

Enabling continuous parsing and analysis despite syntax errors.

Maintaining AST integrity, which is crucial for subsequent compiler phases and IDE features.

Significantly improving the developer experience by providing immediate and

comprehensive feedback.

FutureWork

Building upon the foundational work with AST placeholders, future efforts include:

Integrating more complex recovery mechanisms (e.g., phrase-level recovery).

Further refining diagnostic reporting to minimize the risk of developers not understanding

error messages.

Extend error tolerance beyond parsing into semantic analysis (e.g., type checking)

ahttps://github.com/viktorSrk/hylo-ast-placeholders

https://repository.tudelft.nl BSc Computer Science and Engineering - CSE3000 Research Project v.sersik@student.tudelft.nl

https://repository.tudelft.nl
mailto:v.sersik@student.tudelft.nl

