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Introduction

The main purpose of a caching system is to improve the latency of requests by keeping a
subset of items closer to the customer. Therefore, the efficiency of caching systems is
extremely important due to increased usage of its applications.
Online learning approaches (Online Gradient Ascend, Follow-The-Perturbed-Leader) perform
better than well-known eviction policies: LRU, LFU [1].
Introduction of predictors (of unknown accuracy) for the requests led to optimistic caching
algorithms: Optimistic FTPL (OFTPL) [2], the current state-of-the-art for discrete caching.
Evaluation metric: Cache hit - a file that is in the cache is requested
Different evaluation metric: Switching cost - a penalty incurred by the algorithm when
removing or adding an item in the cache. 
The switching cost can have a greater impact than the number of cache hits in some
scenarios. Under specific conditions, they can grow linearly. 
What strategies can we use to limit this switching cost?
Proposed 2 modifications to the OFTPL algorithm in [2].

System Model

Regret: a metric that evaluates the
number of cache hits against a “best-
in-hindsight” policy (the best static
caching policy assuming knowledge of
the future requests)
Switching cost: an accumulated sum of
difference in the caching states, D
represents the weight of the penalty.
Switching regret: sum of regret and
switching cost
Perturbation factor: term in the OFTPL
algorithm that adds noise, increases
with the prediction errors
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Experiments
Generated synthetic data
Used MovieLens dataset
Generated predictors with varying accuracy

Results

Conclusion We have proposed two heuristics to limit the switching cost. Performance is better than initial OFPTL
implementation in terms of switching cost, switching regret, while keeping the regret withing bounds.
Limitation: highly localized requests like Zipf, lead to worse performance because of unwanted noise.
The first approach seems to achieve better results, however it requires manual tuning of the preset threshold, and
it does not adapt to changes in the request pattern or prediction accuracy. The second approach being more
adaptive.
Improvements: theoretical analysis, varying D, weighted files, different cost for removing than adding, optimism
for switching cost.

The perfect predictor offers us negative regret, representing numerous cache hits, but at the same time, our
caching algorithm will always change the cache state at each time step, therefore incurring a linearly growing
switching cost.
In the real-world dataset, we see a massive improvement (up to 50% for the first approach, up to 31% for the
second) from the two solutions compared to the original implementation. 
The Zipf distribution behaves completely differently than round-robin. Due to the highly localized requests, the
switching cost does not increase with the accuracy of the predictions, our solutions perform the same or worse
than the initial OFTPL. In this case the perturbation factor adds unwanted noise, leading to higher switching costs. 
Generally, the first approach may perform better than the second due to the high threshold we have chosen, but at
the expense of higher regret, meaning less cache hits.

Bounded
perturbation

Add a lower threshold to the
perturbation factor, heuristically chosen
The perturbations never hit 0, therefore
ensuring noise even when predictions
are 100% accurate

Switching cost
informed perturbations

The perturbation factor should increase with
switching costs
As switching costs increase, the algorithm
should add more noise

Round-robin

Zipf

MovieLens

Observations
High accuracy -> low perturbation -> high switching cost
High accuracy -> low regret
High perturbation -> low switching cost / high regret


