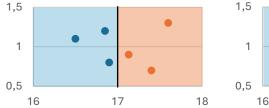
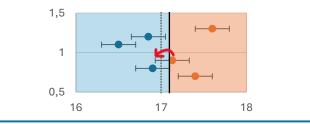

Robust Optimal Regression Trees: Predicting optimal values even when under attack

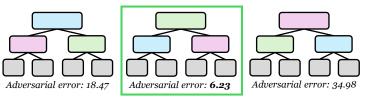


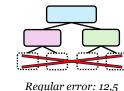
1. Introduction

Regression trees are interpretable models that take in features and predict a value, such as rent prices:

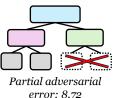


Optimal regression trees minimize the prediction error:


While the adversary maximizes prediction error by changing data:



3. ForTree Approach


Exhaustively search all trees for a set of prediction values and pick the lowest adversarial prediction error:

Prune if the regular prediction error or the partial adversarial error is higher than the minimum found so far:

18

6. Contact: Email: j.c.vleeschdraager@student.tudelft.nl

2. Main question:

How can we compute robust optimal regression trees using exhaustive search with pruning?

4. Results

Adversarial R² accuracy scores on multiple datasets. Bold is best score, * is best tree at timeout.

Dataset	Chen et al.	TREANT	ForTree
Airfoil	-0.16	0.01	0.00*
Auction	0.45	0.08	0.36
AutoMPG	-1.59	0.36	0.48
Household	timeout	timeout	-0.01*
OpticalNet.	0.04	0.04	-0.01*
SeoulBike	-0.08	timeout	0.02^{*}
Servo	0.10	0.14	0.13
Synch.	0.25	0.25	0.25^{*}
Yacht	-0.88	0.29	0.27

5. Conclusion

ForTree finds trees with higher average adversarial accuracy than previous methods. Searching more prediction values can improve accuracy, and scalability can be improved.

Author: Jesse Vleeschdraager Supervisor: Ir. J.G.M. van der Linden Responsible Professor: Dr. Emir Demirović