

## 1. Motivation

- Most amplification attacks are based on the UDP (User Datagram **Protocol) protocol**, which are connection-less, and thus allow source address IP spoofing (modifying the source IP address as the victim's IP address) [1].
- DNS, NTP and Memcached [2]: most used protocols in amplification attack, hitting ranges of **Tbps (Terabits Per Second)** [3], [4].

# 2. Preliminaries

## 1. Protocols

- DNS (Domain Name System) the "phonebook of the Internet", mapping domain names to IP addresses [5].
- NTP (Network Time Protocol) widely used by computers to synchronise clocks on the Internet.
- Memcached protocol is a distributed memory-caching system.

## 2. Cyberattacks Terminology

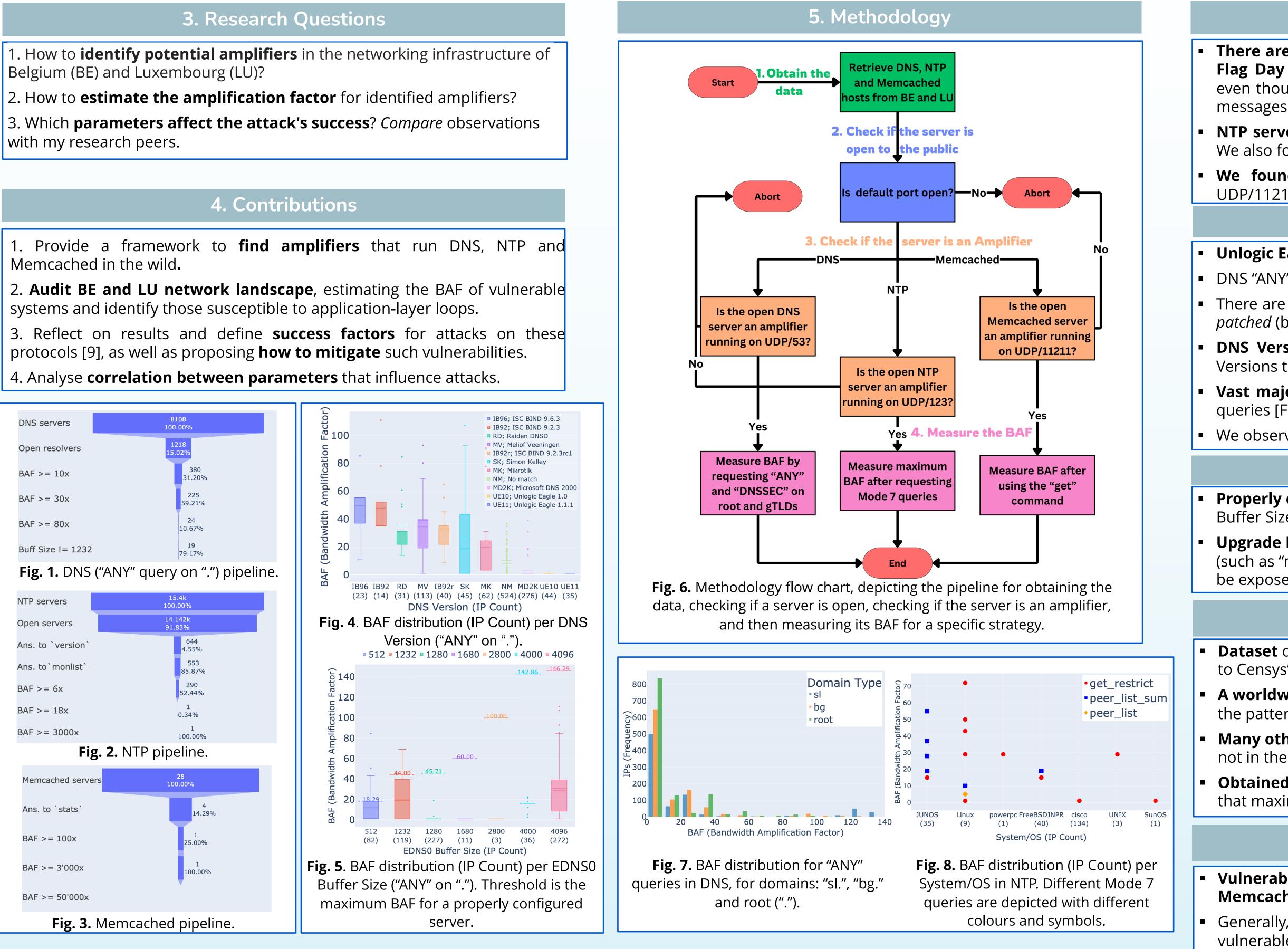
- **Amplifier** internet-connected server that receives a small request and answers with large response.
- **Amplification Attack** [6] attacker spoofs the source IP address and sends a small request to the amplifier, resulting in a large volume of traffic directed back to the victim.
- **DDoS (Distributed Denial-of-Service) -** cyberattack in which the attacker disrupts a victim's machine by exhausting its resources or network in a *distributed* fashion.
- EDNSO a DNS extension that allows the transfer of UDP packets larger than 512 bytes.
- **EDNSO Buffer Size** the maximum size of a DNS packet that a DNS resolver or server can handle using *EDNSO*.
- DNS Flag Day 2020 [7] an initiative that proposed several recommendations for improving the security in DNS, such as setting the EDNS Buffer Size to 1,232.

## 3. Metrics

## Bandwidth Amplification Factor (BAF) [8]

 $BAF = \frac{len(UDP \ payload) \ amplifier \ to \ victim}{len(UDP \ payload) \ attacker \ to \ amplifier}$ (1)

### References


/udp-based-amplification-attack C. Cimpanu. "AWS said it mitigated ted-a-2-3-tbps-ddos-attack-the-largest-ev loudflare. "What is DNS? - How DNS works." Accessed on May 8, 2024. [Online]. Available: https://www.cloudflare.com/learning/dns/what-is-dns oudflare. "DNS Amplification DDoS Attack". Accessed on April 23, 2024. [Online]. Available: https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attacl

C. Bossow, "Amplification Hell: Revisiting Network Protocols for DDoS Abuse," in Proceedings 2014

he Cloudflare Blog, May 19, 2021, Accessed on May 15, 2024, [Online], https://blog.cloudflare.com/dns-flag-day-2020

# Investigating the Amplification Potential of Common UDP-Based **Protocols in DDoS Attacks across Belgium and Luxembourg**

Vlad-Petru Nitu<sup>1</sup> (V.P.Nitu@student.tudelft.nl), Georgios Smaragdakis<sup>1</sup> (Responsible Professor), Harm Griffioen<sup>1</sup> (Supervisor) <sup>1</sup>EEMCS, Delft University of Technology, The Netherlands





# 6. Unexpected Observations

There are 4/119 (3.36%) DNS servers that do not properly follow the DNS Flag Day 2020 recommendation ("lying" when advertising the buffer size: even though EDNS0 Buffer Size is set to 1,232, they still answer on UDP with messages larger than the threshold) [Fig. 5].

**NTP servers** running the JUNOS and Linux seem the most vulnerable [Fig. 8]. We also found an NTP server running Linux achieving **3800x.** 

We found one highly-vulnerable Memcached server that answer on UDP/11211 [Fig. 3], even after the renowned GitHub attack [4].

7. Results

**Unlogic Eagle DNS** servers are not vulnerable [Fig. 4].

DNS "ANY" query resolving domain "sl." peaks at **BAF 132.09** [Fig. 7].

There are **plenty of amplifiers in** *BE* **and** *LU*, being *misconfigured* (DNS) or *not patched* (by running old, vulnerable versions, for NTP and Memcached).

**DNS Version** and **EDNSO Buffer Size** are strongly correlated factors; DNS Versions that advertise buffer sizes of 4,096 produce large BAFs.

Vast majority (96%) of NTP servers are not responsive to Mode 7 (Private) queries [Fig. 2]. None of the **Cisco NTP** servers is vulnerable [Fig. 8].

We observe 15 DNS and 33 NTP **application-level layer loops**, respectively.

## 8. Recommendations

**Properly configure DNS servers**, by restricting "ANY" queries, setting EDNS0 Buffer Size to 1,232, switch to TCP if response size exceeds the buffer's size.

**Upgrade NTP and Memcached to latest versions**. This way, Mode 7 queries (such as "monlist") will be disabled by default in NTP, and Memcached will not be exposed on the UDP port.

# 9. Limitations

**Dataset** does not include all the servers in Belgium and Luxembourg (limited to Censys' and Shodan's databases).

**A worldwide study / more extensive dataset** would be more conclusive on the patterns observed in the vulnerability of the servers.

• Many other protocols may be used in real amplification attacks, which were not in the scope of our research (SNMP, CharGen, etc).

• **Obtained BAFs are lower bounds**, as there may exist other query strategies that maximise the amplification factor.

# 10. Conclusion

• Vulnerable DNS servers should be manually hardened; Vulnerable NTP and **Memcached servers** should be upgraded to the latest versions.

 Generally, vulnerable NTP and Memcached servers produce larger BAFs than vulnerable DNS servers.