AUTHORS

Petru Anica-Popa: M.P.AnicaPopa@student.tudelft.nl

TUDelft

- setting known as **Positive End-Expiratory Pressure (PEEP)**.
- yet failing to reach a consensus.
- a personalized approach to setting PEEP improve treatment could outcomes.

Optimizing Mechanical Ventilation Support for Patients in Intensive Care Units

An Analysis of Deep Learning Methods for Personalizing Positive End-Expiratory Pressure Regime

b. Results - MIMIC-IV				
Model	Mean	Std	Мах	
S-learner	3.33	2.28	9.41	
T-learner	3.26	2.05	10.02	
TARNet	0.31	1.78	5.75	
CFR	0.69	1.62	5.28	

Model	Area	95% CI
S-learner	0.22	[-2.31, 2.71]
T-learner	0.58	[-1.89, 2.97]
TARNet	0.40	[-2.16, 2.91]
CFR	0.04	[-2.40, 2.43]

AFFILIATIONS

Responsible Professor: Jesse Krijthe Supervisors: Rickard Karlsson, Jim Smit Institution: Delft University of Technology

5. Conclusions

S-learner

Consistently effective across all simulations and robust in MIMIC-IV and RCT experiments.

T-learner

Struggled during the simulations but performed well in MIMIC-IV and RCT experiments.

TARNet

Outperformed by S-learner across all simulations but improved as sample size increased; had the worst performance on MIMIC-IV but showed better results in RCT experiments.

CFR

Very similar to TARNet across all simulations; improved on TARNet in MIMIC-IV experiments but had significantly worse performance in RCT experiment.

Key findings

- All estimators exhibited **high variance**, likely due to the **limited samples** in MIMIC-IV and RCT experiments. This led to an overreliance on data splits and neural network initialization, resulting in **poor generalization**.
- S- and T-learners are more suitable for predicting the appropriate PEEP regime for a patient's survival outcome when the training data is limited.
- **TARNet and CFR** may perform than the metalearners when there are ample training samples.

06. Limitations and Recommendations

Limitation: Uncertainty in confounder selection. **Recommendation:** Investigate diverse confounder sets.

Limitation: Metrics may not fully reflect model performance. **Recommendation:** Use a broader set of evaluation metrics.

Limitation: Limited samples hinder learning and generalization. **Recommendation:** Test models on larger real-world datasets.

Limitation: TARNet / CFR's theoretical design mismatch with data setup.

Recommendation: Evaluate models on real-world datasets with continuous outcomes.