
Results
The Simple heuristic performed better than Greedy, as
expected based on the Results of Falleri et al. [2]. That
the lazy variants often performed worse than their non-
lazy counterpart is in stark contrast to the results found
bij Le Dilavrec et al. [4]. This discrepancy suggests a
bug in our code and/or benchmarking setup.

Introduction
Text-based differencing is fast but does not
capture the semantics of code. AST1-based
differencing does and allows for more fine-
grained diffs. Gumtree is a well-known
reference implementation of multiple structural
diff heuristics. Gumtree Greedy [1] was the first
heuristic but does not scale well with large
trees. Gumtree Simple [2] is designed to scale
better but makes stronger assumptions. The
HyperAST [3] is a data structure that improves
scaling by “leveraging code redundancy through
space and time”.

Scalable Structural Code Diffs

Author: Ruben van Seventer
Supervised by: Carolin Brandt and Quentin Le Dilavrec
Course: CSE3000

Comparing Gumtree Greedy and Gumtree Stable adapted for scaling

Background
The Greedy algorithm consists of three phases: Top-Down,
Bottom-Up and Recovery. The recovery phase uses an expensive
TED2 algorithm and runs each time after a Bottom-up mapping.
Because of the cost there is a Size threshold which limits the
subtree size on which recovery is run (we used 200 and 1000) in the
Greedy heuristic.
The Simple algorithm differentiates itself from Greedy in the
recovery phase. It uses a simpler strategy that can be broken up
into three sub-phases. The first two sub-phases search for Exact
and Structural –Isomorphism respectively, the final one searches
for nodes that have unambiguous type matchings.

Research Question
Compared to Gumtree Greedy, does Gumtree
Simple enable additional adaptations helping
with scalability?

[1] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and Accurate Source Code Differencing,” in Proceedings of the International Conference on Automated Software
Engineering, Västeras, Sweden, 2014, pp. 313–324. doi: 10.1145/2642937.2642982.
[2] J.-R. Falleri and M. Martinez, “Fine-grained, accurate and scalable source differencing,” in Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, in ICSE ’24. New York, NY,
USA: Association for Computing Machinery, Apr. 2024, pp. 1–12. doi: 10.1145/3597503.3639148.
[3] Q. Le Dilavrec, D. E. Khelladi, A. Blouin, and J.-M. Jézéquel, “HyperAST: Enabling Efficient Analysis of Software Histories at Scale,” in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, in ASE ’22. New York, NY, USA: Association for Computing Machinery, Jan. 2023, pp. 1–12. doi: 10.1145/3551349.3560423.
[4] Q. Le Dilavrec, D. E. Khelladi, A. Blouin, and J.-M. Jézéquel, “HyperDiff: Computing Source Code Diffs at Scale,” in Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, in ESEC/FSE 2023. New York, NY, USA: Association for Computing Machinery, Nov. 2023, pp. 288–299. doi: 10.1145/3611643.3616312.

Relative performance compared to Greedy-1000 (in %)

Methods
We ported the Simple heuristic to the HyperAST
framework and implemented a variant optimized to
leverage HyperAST structure (Lazy Simple in the table).
Our benchmarks evaluated three metrics: number of
mappings, CPU-cycles, and runtime. The number of
mappings is a proxy for the quality of the resulting diff.
As a baseline, we used the original Greedy algorithm
with a size threshold of 1000 (Greedy-1000). We then
benchmarked both versions of the Simple heuristic. For
all heuristics, we used the default similarity threshold
of 0.5.

1. AST: Abstract Syntax Tree

2.TED: Tree Edit Distance

Conclusion
The well structed nature of the recovery phase of the
Simple heuristic makes it easy to reason about, and is
more modular than the complex recovery phase of the
Greedy Heuristic. This enables Simple to be easier
adapted for Scaling Compared to Greedy.

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3597503.3639148
https://doi.org/10.1145/3551349.3560423
https://doi.org/10.1145/3611643.3616312

	Presentation
	Slide 6

