
Is solver guidance redundant for strong SMT implementations?
An exploration of Z3′s strings.

Odysseas Machairas
o.machairas@student.tudelft.nl

Supervised by D. Sprokholt and S. Chakraborty, TU Delft

1. Context and motivation

Z3 [1] is an SMT [2] solver, which finds satisfiable assignments to queries
such as, for two numbers 𝑋 and 𝑌 , 𝑋 + 𝑌 > 13 and 𝑋 ⋅ 𝑌 < 10. This is a
generalization of SAT, the archetypal NP-complete problem, which means
that universally efficient solutions likely don’t exist. Despite this, Z3 aims to
quickly find answers to such questions.

There are two ways to improve performance:

Domain-specific guidance

Understand the structure of a problem,
change the strategy of the solver (aka tac�
tics, in Z3) or add constraints that refine
the search space.

General purpose
improvements

Make the solver better for
most problems.

Given these two approaches, we ask whether domain�specific guidance
becomes less useful if the underlying implementation is stronger in general
(e.g., like trying to “help” a chess engine, which is futile). Namely, we
compare:

Z3str3 (2017) [3]

• Official Z3 upstream solver
• Searches smaller subtrees first
• Relatively simple/intuitive

Z3-Noodler (2024) [4]

• State of the art, winner of SMT-COMP
2024

• Compares NFAs from regular expres-
sions directly, and many other improve-
ments

• Complicated and not intuitive

• Practical use-cases:
‣ Whether invest time in problem understanding vs just letting the solver

run (or improving it).
‣ Both for research & industry.
‣ General understanding of how the solvers behave and change.

2. Methodology

We ran an experiment on the SMT-LIB2 dataset for strings. Namely, we
simulated domain-specific knowledge by adding constraints based on the
solutions, which quickly cuts off infeasiable branches in regular constraint
propagation.

Solve
(high timeout)

Discard unsat cases

Run Algorithm 1

Benchmark
(normal timeout)

Statistical analysis

Dataset
QF_S

QF_SLIA
QF_SNIA

Model solution
for each input
𝑋 = hello
𝑌 = world

⋮

Domain-specific
constraints
end(𝑋) = llo
|𝑌 | < 10

⋮

Benchmark results

ms help impl
82.4 0 Z3str3
49.8 0.5 Z3str3
18.2 0 Z3-Noodler
15.1 0.5 Z3-Noodler

2.1. Simulating domain-specific knowledge

• There are many constraints (Length greater than, Length less than, Length equals,
Prefix (starts with), Suffix (ends with), Substring (contains))

• Question: How to give help fairly?

• Answer: Quantify the help, as the reduction of the search space
‣ Guesser 𝐺 chooses a length ℓ from Exp(𝜆), then a random string of

length ℓ.
‣ Probability 𝑝𝑠 of guessing solution string 𝑠
‣ Probability 𝑝∗𝑠 of guessing solution given a constraint ∗
‣ Help = log-increase of probability

ℎ = −ln(𝑝∗𝑠) − ln(𝑝𝑠)
ln(𝑝𝑠)

• Sensible results in practice: X = "hello", then help of X startsWith "he"
‣ Expected ∼ 2

5 = 40%
‣ Actual value: 38.87%

Environment reproducibility Note 1

Thanks to Nix, you can
easily reproduce the testing
environment with 100% ac-
curacy.

Machine configuration Note 2

Programs were ran on an laptop with a
M1 Max CPU with 8GB of RAM with
no user programs running. Each combi-
nation was benchmarked multiple times.

3. Results

We find that Z3str3 is sped up more and more consistently than Z3-
Noodler, as per Table 1.

Mean speedup
(weighted)

Mean speedup
(unweighted)

Z3str3 𝟑.𝟑𝟗𝟐 ± 2.43 𝟎.𝟖𝟕𝟗 ± 2.43

Z3-Noodler 𝟎.𝟐𝟖𝟐 ± 4.64 𝟎.𝟐𝟗𝟒 ± 4.64

Table 1: Mean speedups of average runtime with vs without help,
weighted by the original runtime (without help) and equally.

• Observation: “Reducing the search space” improves as the problems get
harder (Figure 2)
‣ Adds overhead to small, fast cases (the “slowdown zone”).

• Z3-Noodler sees huge (70%!) slowdowns with domain-specific help,
because…

1. …it is already fast, so it doesn’t leave the “slowdown zone” (Figure 2)
2. …the additional constraints actively harm performance (Figure 3)

• Overall, there does seem to be diminishing returns to
domain-specific guidance as solvers get stronger

Figure 2: Speedup vs original time for Z3str3 and Z3-Noodler. Shaded area indicates
slowdown. (density at the start not accurately represented)

Figure 3: Heatmap comparison of runtime with and without help. Shaded area indicates
slowdowns, diagonal line corresponds to no change in performance. 𝜇diff is the mean of the

difference of the runtimes.

3.1. Limitations & future recommendations

• More implementations, more theories!
• Higher runtimes for Z3-Noodler (tricky because long runtimes for Z3-

Noodler generally imply very long runtimes for Z3str3).
• Understand how exactly do these constraints harm performance.
• Add support for “soft constraints”.
• Apply procedure to unsatisfiable cases.

Bibliography

[1] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” Tools and Algorithms for the Construction
and Analysis of Systems, vol. 4963. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337–340, 2008. doi:
10.1007/978-3-540-78800-3_24.

[2] C. Barrett, A. Stump, C. Tinelli, and others, “The Smt-Lib Standard: Version 2.0,” in Proceedings of the 8th
International Workshop on Satisfiability modulo Theories (Edinburgh, UK), 2010, p. 14.

[3] M. Berzish, V. Ganesh, and Y. Zheng, “Z3str3: A String Solver with Theory-aware Heuristics,” in 2017
Formal Methods in Computer Aided Design (FMCAD), Vienna: IEEE, Oct. 2017, pp. 55–59. doi: 10.23919/
FMCAD.2017.8102241.

[4] Y.-F. Chen, D. Chocholatý, V. Havlena, L. Holík, O. Lengál, and J. Síč, “Z3-Noodler: An Automata-based
String Solver,” Tools and Algorithms for the Construction and Analysis of Systems, vol. 14570. Springer Nature
Switzerland, Cham, pp. 24–33, 2024. doi: 10.1007/978-3-031-57246-3_2.

mailto:o.machairas@student.tudelft.nl
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-031-57246-3_2

	Context and motivation
	Methodology
	Simulating domain-specific knowledge

	Results
	Limitations & future recommendations

	Bibliography

