Is solver guidance redundant for strong SMT implementations?

An exploration of Z3’s strings.

1. Context and motivation

Z3 [1] is an SMT [2] solver, which finds satisfiable assignments to queries
such as, for two numbers X and Y, X +Y > 13and X - Y < 10. This is a
generalization of SAT, the archetypal NP-complete problem, which means
that universally efficient solutions likely don’t exist. Despite this, Z3 aims to
quickly find answers to such questions.

There are two ways to improve performance:

Domain-specific guidance General purpose

' t
Understand the structure of a problem, lmprovements

Make the solver better for
most problems.

change the strategy of the solver (aka tac-
tics, in Z3) or add constraints that refine
the search space.

Given these two approaches, we ask whether domain-specific guidance
becomes less useful if the underlying implementation is stronger in general
(e.g., like trying to “help” a chess engine, which is futile). Namely, we
compare:

Z3sTR3 (2017) [3] Z3-NOODLER (2024) [4]

 Official Z3 upstream solver =~ « State of the art, winner of SMT-COMP
 Searches smaller subtrees first 2024
« Relatively simple/intuitive « Compares NFAs from regular expres-
sions directly, and many other improve-
ments
« Complicated and not intuitive

Practical use-cases:

» Whether invest time in problem understanding vs just letting the solver
run (or improving it).

» Both for research & industry.

» General understanding of how the solvers behave and change.

2. Methodology

We ran an experiment on the SMT-LIB2 dataset for strings. Namely, we
simulated domain-specific knowledge by adding constraints based on the
solutions, which quickly cuts off infeasiable branches in regular constraint

ropagation.
propag Benchmark

Solve (normal timeout)

(high timeout) Run Algorithm 1 /_\
/\ s
M Domain-specific

odel solution Benchmark results
Dz[l;a:et for each input constraints ns |help inpl
- X = hello end(X) = llo 82.41 0 Z3STR3
QF_SLIA v — world Y| < 10 49.8/ 0.5| Z3STR3
QF _SNIA - 18.2] 0 |Z3-NOODLER
: : 15.1] 0.5 |Z3-NOODLER
N Discard unsat cases Statisticai analysis

~

2.1. Simulating domain-specific knowledge

« There are many constraints (Length greater than, Length less than, Length equals,
Prefix (starts with), Suffix (ends with), Substring (contains))

e Question: How to give help fairly?

- Answer: Quantify the help, as the reduction of the search space

» Guesser G chooses a length ¢ from Exp(\), then a random string of
length £.

» Probability p. of guessing solution string s

» Probability p} of guessing solution given a constraint *

» Help = log-increase of probability

In(p;) — In(p,)
In(p,)

h =

« Sensible results in practice: X = "hello", then help of X startsWith "he"
» Expected ~ 2 = 40%
» Actual value: 38.87%

Environment reproducibility = Note 1 Machine configuration Note 2

Programs were ran on an laptop with a
M1 Max CPU with 8GB of RAM with
no user programs running. Each combi-

Thanks to Nix, you can

L ‘ easily reproduce the testing

environment with 100% ac-
curacy. nation was benchmarked multiple times.

3. Results

We find that Z3sTR3 is sped up more and more consistently than Z3-
NOODLER, as per Table 1.

Mean speedup | Mean speedup
(weighted)

Z3STR3 3.392 +2.43 | 0.879 4 2.43
Z3-NOODLER 0.282 T 464 0.294 T 464

(unweighted)

Table 1: Mean speedups of average runtime with vs without help,
weighted by the original runtime (without help) and equally.

 Observation: "Reducing the search space” improves as the problems get
harder (Figure 2)
» Adds overhead to small, fast cases (the “slowdown zone”).

« Z3-NOODLER sees huge (70%!) slowdowns with domain-specific help,
because...

1. ...it is already fast, so it doesn’t leave the “slowdown zone” (Figure 2)
2. ...the additional constraints actively harm performance (Figure 3)

» Overall, there does seem to be diminishing returns to
domain-specific guidance as solvers get stronger

Odysseas Machairas

o.machairas@student.tudeltt.nl

Supervised by D. Sprokholt and S. Chakraborty, TU Delft

10* A

103 E

Speedup (problems/s %)

o z3str3 (growth rate = 1.025 £ 0.001, R% = 6.24e — 02)
¢ z3-noodler (growth rate = 0.934 + 1.057, R? = 3.54e - 06)

|
50 75 100 125 150 175
Original runtime (s)

Figure 2: Speedup vs original time for Z3sTrR3 and Z3-NooDLER. Shaded area indicates
slowdown. (density at the start not accurately represented)

z3str3 (Ugife = —104.85£10163 ms) z3-noodler (pgifr =311.25+4614 ms

10° g —~

2
1 O 5 //// 1 0 5 1 O

10% g
103 E
102 E

] /// = 1
- 10 1 . // - 10
10! 5 [

New runtime (ms)
p—
(e}
[\

/,/
w0
I’
7

N\,
"l
N
N\,
S

109 E

_ 1
107 5 107 4 -
- 10° -

I I I 100
10° 102 104
Original runtime (ms/problem)

I I I
10° 102 10*
Original runtime (ms/problem)

Figure 3: Heatmap comparison of runtime with and without help. Shaded area indicates
slowdowns, diagonal line corresponds to no change in performance. p 4 is the mean of the
difference of the runtimes.

3.1. Limitations & future recommendations

« More implementations, more theories!
« Higher runtimes for Z3-NOODLER (tricky because long runtimes for Z3-
NoOODLER generally imply very long runtimes for Z3sTR3).

Understand how exactly do these constraints harm performance.
Add support for “soft constraints”.

Apply procedure to unsatisfiable cases.

Bibliography

[1] L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” Tools and Algorithms for the Construction
and Analysis of Systems, vol. 4963. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337-340, 2008. doi:
10.1007/978-3-540-78800-3_24.

(2] C. Barrett, A. Stump, C. Tinelli, and others, “The Smt-Lib Standard: Version 2.0,” in Proceedings of the 8th
International Workshop on Satisfiability modulo Theories (Edinburgh, UK), 2010, p. 14.

[3] M. Berzish, V. Ganesh, and Y. Zheng, “Z3str3: A String Solver with Theory-aware Heuristics,” in 2017
Formal Methods in Computer Aided Design (FMCAD), Vienna: IEEE, Oct. 2017, pp. 55-59. doi: 10.23919/
FMCAD.2017.8102241.

[4] Y.-F. Chen, D. Chocholaty, V. Havlena, L. Holik, O. Lengal, and J. Si¢, “Z3-Noodler: An Automata-based
String Solver,” Tools and Algorithms for the Construction and Analysis of Systems, vol. 14570. Springe
Switzerland, Cham, pp. 24-33, 2024. doi: 10.1007/978-3-031-57246-3_2.

mailto:o.machairas@student.tudelft.nl
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-031-57246-3_2

	Context and motivation
	Methodology
	Simulating domain-specific knowledge

	Results
	Limitations & future recommendations

	Bibliography

