Is solver guidance redundant for strong SMT implementations?

An exploration of Z3’s strings.

1. Context and motivation

Z3 [1] is an SMT [2] solver, which finds satisfiable assignments to queries
such as, for two numbers X and Y, X +Y > 13and X - Y < 10. This is a
generalization of SAT, the archetypal NP-complete problem, which means
that universally efficient solutions likely don’t exist. Despite this, Z3 aims to
quickly find answers to such questions.

There are two ways to improve performance:

Domain-specific guidance General purpose

' t
Understand the structure of a problem, lmprovements

Make the solver better for
most problems.

change the strategy of the solver (aka tac-
tics, in Z3) or add constraints that refine
the search space.

Given these two approaches, we ask whether domain-specific guidance
becomes less useful if the underlying implementation is stronger in general
(e.g., like trying to “help” a chess engine, which is futile). Namely, we
compare:

Z3sTR3 (2017) [3] Z3-NOODLER (2024) [4]

 Official Z3 upstream solver =~ « State of the art, winner of SMT-COMP
 Searches smaller subtrees first 2024
« Relatively simple/intuitive « Compares NFAs from regular expres-
sions directly, and many other improve-
ments
« Complicated and not intuitive

Practical use-cases:

» Whether invest time in problem understanding vs just letting the solver
run (or improving it).

» Both for research & industry.

» General understanding of how the solvers behave and change.

2. Methodology

We ran an experiment on the SMT-LIB2 dataset for strings. Namely, we
simulated domain-specific knowledge by adding constraints based on the
solutions, which quickly cuts off infeasiable branches in regular constraint

ropagation.
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2.1. Simulating domain-specific knowledge

« There are many constraints (Length greater than, Length less than, Length equals,
Prefix (starts with), Suffix (ends with), Substring (contains))

e Question: How to give help fairly?

- Answer: Quantify the help, as the reduction of the search space

» Guesser G chooses a length ¢ from Exp(\), then a random string of
length £.

» Probability p. of guessing solution string s

» Probability p} of guessing solution given a constraint *

» Help = log-increase of probability

In(p;) — In(p,)
In(p,)

h =

« Sensible results in practice: X = "hello", then help of X startsWith "he"
» Expected ~ 2 = 40%
» Actual value: 38.87%

Environment reproducibility = Note 1 Machine configuration Note 2

Programs were ran on an laptop with a
M1 Max CPU with 8GB of RAM with
no user programs running. Each combi-

Thanks to Nix, you can

L ‘ easily reproduce the testing

environment with 100% ac-
curacy. nation was benchmarked multiple times.

3. Results

We find that Z3sTR3 is sped up more and more consistently than Z3-
NOODLER, as per Table 1.

Mean speedup | Mean speedup
(weighted)

Z3STR3 3.392 +2.43 | 0.879 4 2.43
Z3-NOODLER 0.282 T 464 0.294 T 464

(unweighted)

Table 1: Mean speedups of average runtime with vs without help,
weighted by the original runtime (without help) and equally.

 Observation: "Reducing the search space” improves as the problems get
harder (Figure 2)
» Adds overhead to small, fast cases (the “slowdown zone”).

« Z3-NOODLER sees huge (70%!) slowdowns with domain-specific help,
because...

1. ...it is already fast, so it doesn’t leave the “slowdown zone” (Figure 2)
2. ...the additional constraints actively harm performance (Figure 3)

» Overall, there does seem to be diminishing returns to
domain-specific guidance as solvers get stronger
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Figure 2: Speedup vs original time for Z3sTrR3 and Z3-NooDLER. Shaded area indicates
slowdown. (density at the start not accurately represented)
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Figure 3: Heatmap comparison of runtime with and without help. Shaded area indicates
slowdowns, diagonal line corresponds to no change in performance. p 4 is the mean of the
difference of the runtimes.

3.1. Limitations & future recommendations

« More implementations, more theories!
« Higher runtimes for Z3-NOODLER (tricky because long runtimes for Z3-
NoOODLER generally imply very long runtimes for Z3sTR3).

Understand how exactly do these constraints harm performance.
Add support for “soft constraints”.

Apply procedure to unsatisfiable cases.
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