Crogaran sJdnthesis from game rewards - finding
complex subprograms for saolving Hinecratt

1. Intro # Backaround

Froaram santhesis 1= the task of generating proaram to soluve 5
prablem, A specification describes the regquir-ements, and can have
mand forms.

Inductive progaram sdanthesis i=s one approach. It uses an inductive
specification CI/0 examplesd, a arammar to specify suntax, and
searches enumeratively,

Fringael — program synthesizer that uses fraaments for exploitation
and angelic conditions for exploration,

Fragments are useful Angelic conditions
subtress from previous generalize statements for
Erograms., efficient search,
return double sumPositiveDoubles(double[] arr) {
| E double sum = 8.8;
+ - for (int 1 = @; <ANGELIC>; i++)
/ \ foo! (b, ¢) if (<ANGELIC>)
a fooll) a + foo! (b, c) sum = sum + arr[i];
f \ return a + foo! (b, c) return sum:
b ¢

1
Formulate program santhesis for plading games — specification from
game rewards, Then, integrate this algorithim into MinefAL.,

Then, we tune FrAngel to find more complex subprograms for solwving
Minecratt,

= Fesearch questions

How do we define program sunthesis from rewards?

How to explore game environments to discouver
useftul actions?

How do we ad_just the FrAngel program sunthesizer

to discover more complex subprograms’?

-~

=2 Methodaology

=1 bDeneralizing FrAngel
Allow arbitrarg garammars and generators,
Add fragaments to grammar,
Angelic conditions with placeholders
Feep track of the wvisited space,
atore partial solutions,

e Hetining program sdnthesis from
e ards
aplit the reward difference betwusen the goal
and player Into segments - each one = an /0
example, Higher or equal final reward passes 3
test,

U |

S Integration with game enwvironment
e run each FrAngel program in MinefL, and get
final reward.

Checkpointing = after every FrAingel cucle,
start from the new best position,

2.4 Experiments - complex subprograms

Configuration — change FrAingel's config to
pick fragaments, or modify with fraaments,
moresless often,.
Implementation — change FrAngel’s
implementation to favor complex progarams,

y with the more comple:x

AUTHOR
Alperen Guncan
A.l.Guncan@student.tudelft.

SUPERVISOR
Tilman Hinnerichs

d, Experimental 2etup

Our experiments are on the dense navigation task, The goal 1= to
find a diamond block, &9 blocks awad. Feward s inversesly
propor-tional to the goal, He keep track of two metrics - progaram
and average fragment complexity,

0, Fesult=s

Cxperiment 1 — Fragment contig changes

P
Summary of how config features affect fragment and program complexity, seed 958129

Here, wue focus on how s e | o o .
fraament usage and rule ’ 1 ?
selection affect complaxity,

o]
4.0 - 13.72 12.35 13,44

13.05 1391 | 1401

12,53 13.43

e tune the parameters
use_fragments_chance,
use_entire_fraament_chance,

gen_praob_similar_neuw,

1258 13.39

— —

3 4 =
—_ | —

1 L 1}

0.3 06508 0.9 0306509 032505075

HAupothesis — more fraaments
means higher relevance, but
less complexity,

Fragment Complexity (average #nodes [fragment)

e fragments_chance use_entire_fragment_chance gen_similar_prob_new

L Feature that is aggregated on

Cxperiment 2 — "remember” condition

Summary af how ESimpler toggle affects fragment and program complexity

|'|:|.

= Duiiisd Frigal
Chi DOl W, ondenal Frededssl
ik, Cuesid FrADG

10T

e flip the condition for

remembering prograns,
to instead resoluve ties

Prrogr-am,

Aupothesis - storing more
complex programs leads
to complex fragments

Fragment Complexity (average #nodes [fragrment)
a
| I —

A3 1174330 £134 e
rl
L World seed J

&, Conclusion

e increased average fragment complexity by reducing the probability of picking fraaments for

t.r.hinnerichs@tudelft.nl rules, and for modifding proarams with fraaments, This, however, trades—-off proaram relevance,

Sebastian Dumancic

Checkpointing, however, minimizes the i=ssue, due to context—=switchina, Flipping the Yremembear”

. PROFESSOR . . . T .
i condition also increases complexity — mining frrom more complex programs preserves complesxity,

s.dumancic@tudelft.nl &

