FLEXIBLE JOB SHOP OPTIMIZATION WITH SIMULATED ANNEALING M.C. Bak (M.C.Bak@student.tudelft.nl) - Supervisors: K.C. van den Houten, M.M. de Weedt

Delft University of Technology

1. Background

Flexible Job Shop Problem

Optimization for process industries, done with a case study for a DSM production line. The production line is represented by a Flexible Job Shop Scheduling Problem (FJSP):

- Set of 3 operations;
- Distinctive set of **machines** for each operation;
- Processing times for the operations on the machines;
- N jobs, made up of 1 to 3 operations;
- Changeover times, for each machine an NxN matrix.

Goals

- Minimize the **makespan** of an FJSP instance;
- Find possible **bottlenecks**.

2. Research Questions

Is Simulated Annealing better suited for the FJSP than the **MILP** implementation?

- How well does the given **MILP** work of the **FSJP** instances?
- How is **Simulated Annealing** applied to the **FJSP**?
- What are effective initialization and neighbourhood functions for Simulated annealing?
- How does a SA optimization **compare** to the MILP formulation for the FJSP instances?
- Are there any **bottlenecks** in the production line?

References

- [1] Monaldo Mastrolilli and Luca Maria Gambardella. "Effective neighbourhood functions for the flexible job shop problem". In: Journal of Scheduling 3.1 (Jan. 2000), pp. 3–20. ISSN: 1094-6136. DOI: https://doi.org/10. 1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y. URL: https://doi.org/10.1002/(SICI)1099-1425(200001/02)3: 1%3C3::AID-JOS32%3E3.0.CO%202-Y.
- [2] Yaghout Nourani and Bjarne Andresen. "A comparison of simulated annealing cooling strategies". In: Journal of Physics A: Mathematical and General 31.41 (Oct. 1998), pp. 8373–8385. DOI: 10.1088/0305-4470/ 31/41/011. URL: https://doi.org/10.1088/0305-4470/31/41/011.
- [3] Shi Yang et al. "A novel initialization method for solving Flexible Jobshop Scheduling Problem". In: 2009 International Conference on Computers Industrial Engineering. July 2009, pp. 68–73. DOI: 10.1109/ICCIE. 2009.5223891.

3. Method

Available machines	M_1 M_3 M_5	$M_2 M_3 M_4 M_5$
Occupation time	4 - 3 - 4	- 4 3 5 2
Temporary array	4 - 3 - 4	- 4 6 5 2
Shortest time	3	2
The selected machine	<i>M</i> ₃	M5
Updated time array	00300 -	00302

Fig. 2: Partial operation of the Global Selection method[3].

Annealing

Annealing enables the algorithm to escape unfavourable local search spaces. The annealing of the algorithm is done with **exponential cooling**.

Formula for exponential cooling: $T(t) = T_0 * \alpha^t$ [2]. The convergence is shown in Figure 4

Fig. 3: A complete graph used for the neighbourhood creation

Fig. 4: Convergence plot of the annealing.

Results extra machine on operation 3				
Original	extra machine		Original	extra m
MILP-900	MILP-900	Improved	SA	SA
22	18	18%	25	
33	24	27%	42	
43	32	26%	57	
56	43	23%	71	
72	53	26%	86	
87	67	23%	99	
100	76	24%	112	
109	91	17%	129	
128	102	20%	141	
138	116	16%	156	
156	135	13%	169	
178	156	12%	176	
200	180	10%	191	
Average Improvement		20%	Average im	provem

Conclusion

- MILP is better for smaller instances (0-11);
- SA is better for bigger instances (12-19);
- Bottleneck found in operation 3.

Future work

- Remove randomness from Global Selection;
- Improve neighbourhood function.