
Exploring the computational feasibility limits of perplexity in t-SNE for scenarios of
limited working memory

Author: Dimitar Netzov1 | Responsible Professor: Klaus Hildebrandt1 | Supervisor: Martin Skrodzki1

1Delft University of Technology

t-SNE, and the issues that comewith it

Making sense of large datasets is a challenging task for researchers. An approach that leverages

human intuition and pattern recognition is to visualize the often high dimensional data into two or

three dimensions. This is dimensionality reduction, and a popular algorithm for it is t-distributed

stochastic neighbor embedding (t-SNE).

The Good: The reason for t-SNEs’ popularity is its ability to model non-linear relationships

in data. [It does so by trying to model the local structure]

The Bad: An important parameter in t-SNE is the perplexity. It is effectively the size of the

local neighborhood to be considered by the algorithm. Since the optimal size is dependent

on the underlying dataset, there is no single ”best” value for the perplexity.

The Ugly: While some heuristics have been developed to offer guidance, in the end,

selecting the perplexity value revolves around trial and error with intuition.

With the huge size of datasets used in practice, the process of tuning the perplexity is often very

time-consuming. But aside from time, it also requires memory. This can become a problem as

exceeding the available memory leads to even higher time penalties or worse - crashes.

In this poster

To help researchers avoid slowdowns and crashes, this [poster/paper] explores the computational

feasibility of combinations of data sizes and perplexities for a given hardware by answering these

questions:

1. Can the algorithm be divided into sections based on memory consumption patterns?

2. What is the formula for the peak memory consumption with respect to data size N and

perplexity P ?

3. Can the formula be derived via samples from runs with small N and P parameters?

4. How can the formula be improved?

Methodology

The implementation of t-SNE used in the experiments was openTSNEwith MNIST as the dataset.

All experiments were run on Windows 11 in a separate process to isolate memory usage. The

actual peak usage was measured as the RSS of the process, monitored during execution. The

following experiments/analyses were conducted:

Real measurements: Measure peak RAM usage during execution for smaller perplexities and

sample sizes to obtain a testing set.

Theoretical estimate: Estimate the space complexity by analysing the algorithm’s code.

Compare measurements to estimates: See how well the theoretical estimate matches the

measured values.

Estimate the formulas from experimental data: Using regression and the training set

obtained earlier, estimate the space complexity formula. Use it to validate theoretical

findings.

Verify: Test the theoretical and estimated formulas on high perplexity runs on the whole

dataset.

Improve: Test a modified version of the library algorithm to verify a lower memory

consumption.

Sections

The algorith can be divided into five sections: Annoy KNN estimation, conditional matrix compu-

tation, symmetrisation, normalisation, and the fitting of the low-dimensional embedding.

openTSNE algorithm sections for Annoy and FIt-SNE. The symmetrization and normalization are

zoomed in on the time axis for visibility.

Theoretical analysis

The theoretical formula found was 204N + 400N + C , where C is a constant that heavily depends

on the setup. In our case, C = 126000000

Mean percentage error for the small parame-

ter samples, with the constant predicted by the

analytical model

Reconstruction of testing set by the Lasso

model

Analytical model

To synthesize the memory usage formula from the test samples, the Lasso regression model was

used on the test set. This resulted in the formula 208·N ·P+1285·N+126000000. The reconstruction
has a mean absolute percentage error of 2.3% and an R2 value of 0.9993.

Validation on larger values of N and P

To validate the theoretical and analytical approaches, their predictive power was measured for

runs on the entire dataset, N = 70000, with perplexities up to P = 800.

Mean error of between the models versus peak memory usage, with 1% band marked in.

Improvement of the symmetrization section

The symmetrization section introduces multiple copies of the P matrix due to the calculations

being done on a single line. By splitting up said line, an improvement in memory usage can be

seen for higher values of N and P .

Original and modified code Mean percent error between the default and

modified implementation. Lower is better.

FutureWork

Future Work

1. Explore the impact that going into swap memory has on the execution times of the

algorithm.

2. Explore the limits of using swap at which crashes occur.

3. Test the approximation method for other implementations of t-SNE

4. Derive a formula for the space complexity of the embedding algorithms.

5. Construct a tool that utilizes the results of this research to inform researchers of

computational feasibility, given the parameters of their experiment.

References & AcknowledgmentsBachelor Thesis. 2025. Delft, The Netherlands D.P.Netzov@student.tudelft.nl

mailto:D.P.Netzov@student.tudelft.nl

	References

