
Agda2Rust: A Study on an Alternative Backend for the Agda Compiler
Hector Peeters - h.peeters@student.tudelft.nl

Supervisors: J.G.H. Cockx
 L.F.B. Escot

● Dependently typed functional
programming language [1]

● Proof assistant
● Compiles to a different

language
● Lazily evaluated
● Backends for Haskell and

JavaScript

Agda

● Does not outperform the
current Haskell backend

● Lazy evaluation adds
significant performance
overhead

● Rust and Rust-optimal are
identical in performance so
for strict evaluation: agda2rust
generates almost optimal
code

Results

ConclusionConclusionFuture Work
● Implement a more optimised

thunk
● Add support for more built-in

functions and data types
● Implement additional

optimisations (removing
erased types, built-in
booleans, tail-call
optimisation, …)

● Redesign data type
representation to allow full
dependent type support

● Consider other systems
languages like Zig or Nim

References:
[1]: The Agda Team. 2022. The Agda Documentation. https://agda.readthedocs.io/en/v2.6.2.1/
[2]: The Rust Team. 2022. Rust Programming Language Website. https://www.rust-lang.org/

ConclusionConclusionImplementation

ConclusionConclusionMotivation
● Support for FFI with more

languages
● Increase Agda’s industry

adoption
● Haskell backend uses a lot of

unsafe type casts
● Potential performance

improvement
● Make use of Rust’s library

ecosystem

1.

● General purpose systems
language [2]

● Statically typed
● No garbage collection
● Compiled using an LLVM

backend
● Collection of modern libraries

Rust2.

3.

4.

● No higher-order functions
● Laziness implementation is

incomplete
● Incorrect code generation for

non-erased dependent types

Limitations5.

6.

ConclusionConclusionConclusion
● Rust is not a suitable target

language when performance
is important

● Rust’s type system makes
code generation
unnecessarily difficult

● The current generated code
integrates very nicely into an
existing Rust code base

● A redesign is required to
make the backend feature-
complete

7.

8.

8.

Figure 1: Natural number and plus definition in Agda

Figure 2: Generated strict Rust code of the natural number example

Figure 3: Consume function benchmark

	Page 1

